Skip to main content

Genetic Research on Ocular Health and Disease in a Population from Nepal

  • Chapter
  • First Online:
Advances in Vision Research, Volume II

Abstract

Ocular disease is a major public health concern worldwide, including Asia where large numbers of individuals suffer from blindness and visual impairment. In South Asian countries like Nepal, for example, age-related cataract is a leading cause of blindness and visual impairment. Age-related cataract is influenced by a complex interplay of non-genetic and genetic risk factors. Identifying the genetic risk factors involved can help elucidate the causal biological mechanisms underlying the development and progression of cataract and help identify those individuals at high risk of disease. The primary objective of an ongoing study in the Jirel ethnic group of eastern Nepal (the Jiri Eye Study) is to define the genetic architecture of normal ocular trait variation and characterize genetic factors influencing risk for common ocular diseases such as cataract. The Jirel population has been the focus of genetic epidemiological studies for more than two decades, and a well-documented extended pedigree has been developed for the group making it extremely powerful and informative for genetic studies. All 1292 study participants discussed in the work presented here belong to this single extended pedigree. Members of the Jirel population underwent a comprehensive eye examination that included lens opacity grading in accordance with the Lens Opacities Classification System II (LOCS II). A variance components method was used to estimate heritability of cataract. Of the 1292 participants, 57.0% were female and 43.0% were male. The mean (SD, range) age at exam is 42.0 (16.7, 18–88) years. The prevalence of cataract (any type) in individuals aged 40 years or older is 25.8%, and additive genetic effects (48.3%) play a significant role in determining the risk of developing cataract in this population. The Jirel population is a powerful resource for the study and identification of genetic mechanisms influencing variation observed in ocular health and disease metrics. We anticipate that the Jiri Eye Study will continue to make significant contributions to the genetics of ocular health and disease in Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998;62(5):1198–211.

    Article  CAS  Google Scholar 

  2. Almasy L, Blangero J. Human QTL linkage mapping. Genetica. 2009;136(2):333–40.

    Article  CAS  Google Scholar 

  3. Axenovich T, Zorkoltseva I, Belonogova N, et al. Linkage and association analyses of glaucoma related traits in a large pedigree from a Dutch genetically isolated population. J Med Genet. 2011;48(12):802–9.

    Article  CAS  Google Scholar 

  4. Blangero J. Population genetic approaches to phenotypic microevolution in the Jirels of Nepal. PhD dissertation., Case Western Reserve University; 1987.

    Google Scholar 

  5. Blangero J. Localization and identification of human quantitative trait loci: king harvest has surely come. Curr Opin Genet Dev. 2004;14(3):233–40.

    Article  CAS  Google Scholar 

  6. Blangero J, Williams JT, Almasy L. Novel family-based approaches to genetic risk in thrombosis. J Thromb Haemost. 2003;1(7):1391–7.

    Article  CAS  Google Scholar 

  7. Blangero J, Göring HH, Kent JW, et al. Quantitative trait nucleotide analysis using Bayesian model selection. Hum Biol. 2005;77(5):541–59.

    Article  Google Scholar 

  8. Blangero J, Diego VP, Dyer TD, et al. A kernel of truth: statistical advances in polygenic variance component models for complex human pedigrees. Adv Genet. 2013;81:1–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bourgain C, Genin E, Quesneville H, et al. Search for multifactorial disease susceptibility genes in founder populations. Ann Hum Genet. 2000;64(3):255–65.

    Article  CAS  Google Scholar 

  10. Bourne RR, Stevens GA, White RA, et al. Causes of vision loss worldwide, 1990–2010: a systematic analysis. Lancet Glob Health. 2013;1(6):e339–49.

    Article  Google Scholar 

  11. Cameron AC, Windmeijer FAG. An R-squared measure of goodness of fit for some common nonlinear regression models. J Econom. 1997;77(2):329–42.

    Article  Google Scholar 

  12. Chua J, Koh JY, Tan AG, et al. Ancestry, socioeconomic status, and age-related cataract in Asians: the Singapore epidemiology of eye diseases study. Ophthalmology. 2015;122(11):2169–78.

    Article  Google Scholar 

  13. Chylack LT Jr, Leske MC, McCarthy D, et al. Lens opacities classification system II (LOCS II). Arch Ophthalmol. 1989;107(7):991–7.

    Article  Google Scholar 

  14. Cohen JC, Kiss RS, Pertsemlidis A, et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science. 2004;305(5685):869–72.

    Article  CAS  Google Scholar 

  15. Congdon N, Broman KW, Lai H, et al. Nuclear cataract shows significant familial aggregation in an older population after adjustment for possible shared environmental factors. Invest Ophthalmol Vis Sci. 2004;45(7):2182–6.

    Article  Google Scholar 

  16. Congdon N, Broman KW, Lai H, et al. Cortical, but not posterior subcapsular, cataract shows significant familial aggregation in an older population after adjustment for possible shared environmental factors. Ophthalmology. 2005;112(1):73–7.

    Article  Google Scholar 

  17. Hammond CJ, Snieder H, Spector TD, et al. Genetic and environmental factors in age-related nuclear cataracts in monozygotic and dizygotic twins. N Engl J Med. 2000;342(24):1786–90.

    Article  CAS  Google Scholar 

  18. Hammond CJ, Duncan DD, Snieder H, et al. The heritability of age-related cortical cataract: the twin eye study. Invest Ophthalmol Vis Sci. 2001;42(3):601–5.

    CAS  PubMed  Google Scholar 

  19. Howard BV, Devereux RB, Cole SA, et al. A genetic and epidemiologic study of cardiovascular disease in Alaska natives (GOCADAN): design and methods. Int J Circumpolar Health. 2005;64(3):206–21.

    Article  Google Scholar 

  20. Iyengar SK, Klein BE, Klein R, et al. Identification of a major locus for age-related cortical cataract on chromosome 6p12-q12 in the Beaver Dam Eye Study. Proc Natl Acad Sci U S A. 2004;101(40):14485–90.

    Article  CAS  Google Scholar 

  21. Kent JW, Dyer TD, Göring HH, et al. Type I error rates in association versus joint linkage/association tests in related individuals. Genet Epidemiol. 2007;31(2):173–7.

    Article  Google Scholar 

  22. Kristiansson K, Naukkarinen J, Peltonen L. Isolated populations and complex disease gene identification. Genome Biol. 2008;9(8):109.

    Article  Google Scholar 

  23. Liao J, Su X, Chen P, et al. Meta-analysis of genome-wide association studies in multiethnic Asians identifies two loci for age-related nuclear cataract. Hum Mol Genet. 2014;23(22):6119–28.

    Article  CAS  Google Scholar 

  24. Liu YC, Wilkins M, Kim T, et al. Cataracts. Lancet. 2017;390(10094):600–12.

    Article  Google Scholar 

  25. Nakatsuka N, Moorjani P, Rai N, et al. The promise of discovering population-specific disease-associated genes in South Asia. Nat Genet. 2017;49(9):1403–7.

    Article  CAS  Google Scholar 

  26. Pokharel GP, Regmi G, Shrestha SK, et al. Prevalence of blindness and cataract surgery in Nepal. Br J Ophthalmol. 1998;82(6):600–5.

    Article  CAS  Google Scholar 

  27. Sapkota YD, Pokharel GP, Nirmalan PK, et al. Prevalence of blindness and cataract surgery in Gandaki Zone, Nepal. Br J Ophthalmol. 2006;90(4):411–6.

    Article  CAS  Google Scholar 

  28. Sapkota YD, Sunuwar M, Naito T, et al. The prevalence of blindness and cataract surgery in Rautahat District, Nepal. Ophthalmic Epidemiol. 2010;17(2):82–9.

    Article  Google Scholar 

  29. Sherchan A, Kandel RP, Sharma MK, et al. Blindness prevalence and cataract surgical coverage in Lumbini Zone and Chetwan District of Nepal. Br J Ophthalmol. 2010;94(2):161–6.

    Article  CAS  Google Scholar 

  30. Sherwin JC, Hewitt AW, Ruddle JB, et al. Genetic isolates in ophthalmic diseases. Ophthalmic Genet. 2008;29(4):149–61.

    Article  CAS  Google Scholar 

  31. Shiels A, Hejtmancik JF. Genetics of human cataract. Clin Genet. 2013;84(2):120–7.

    Article  CAS  Google Scholar 

  32. Shifman S, Darvasi A. The value of isolated populations. Nat Genet. 2001;28(4):309–10.

    Article  CAS  Google Scholar 

  33. Shrestha S, Shrestha SM, Gurung A. Comparative study of prevalence of cataract at high altitude and Kathmandu Valley. J Nepal Health Res Counc. 2016;14(33):81–4.

    CAS  PubMed  Google Scholar 

  34. Stevens GA, White RA, Flaxman SR, et al. Global prevalence of vision impairment and blindness: magnitude and temporal trends, 1990–2010. Ophthalmology. 2013;120(12):2377–84.

    Article  Google Scholar 

  35. Tennessen JA, Bigham AW, O’Connor TD, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337(6090):64–9.

    Article  CAS  Google Scholar 

  36. Thapa SS, Berg RV, Khanal S, et al. Prevalence of visual impairment, cataract surgery and awareness of cataract and glaucoma in Bhaktapur District of Nepal: the Bhaktapur Glaucoma Study. BMC Ophthalmol. 2011;11:2.

    Article  Google Scholar 

  37. Vinson JA. Oxidative stress in cataracts. Pathophysiology. 2006;13(3):151–62.

    Article  CAS  Google Scholar 

  38. Wijsman EM. The role of large pedigrees in an era of high-throughput sequencing. Hum Genet. 2012;131(10):1555–63.

    Article  Google Scholar 

  39. Williams JT, Van Eerdewegh P, Almasy L, et al. Joint multipoint linkage analysis of multivariate qualitative and quantitative traits. I likelihood formulation and simulation results. Am J Hum Genet. 1999;65(4):1134–47.

    Article  CAS  Google Scholar 

  40. Williams KD, Nahhas RW, Cottom CR, et al. Evaluation of qualitative methods for phenotyping brachymesophalangia-V from radiographs of children. Am J Hum Biol. 2012;24(1):68–73.

    Article  Google Scholar 

  41. Williams KD, Blangero J, Subedi J, et al. Nonsyndromic brachydactyly type D and type E mapped to 7p15 in healthy children and adults from the Jirel ethnic group in eastern Nepal. Am J Hum Biol. 2013;25(6):743–50.

    Article  Google Scholar 

  42. Williams-Blangero S. Patterns of marital exchange and phenotypic differentiation in the Jirels of Nepal. Ph.D. Dissertation., Case Western Reserve University (1987).

    Google Scholar 

  43. Williams-Blangero S. Clan-structured migration and phenotypic differentiation in the Jirels of Nepal. Hum Biol. 1989;61(2):143–57.

    CAS  PubMed  Google Scholar 

  44. Williams-Blangero S. Population structure of the Jirels: patterns of mate choice. Am J Phys Anthropol. 1990;82(1):61–71.

    Article  CAS  Google Scholar 

  45. Williams-Blangero S, Blangero J. Anthropometric variation and the genetic structure of the Jirels of Nepal. Hum Biol. 1989;61(1):1–12.

    CAS  PubMed  Google Scholar 

  46. Williams-Blangero S, Blangero J. Effects of population structure on within-group variation in the Jirels of Nepal. Hum Biol. 1990;62(1):131–46.

    CAS  PubMed  Google Scholar 

  47. Williams-Blangero S, Blangero J. Collection of pedigree data for genetic analysis in isolate populations. Hum Biol. 2006;78(1):89–101.

    Article  Google Scholar 

  48. Williams-Blangero S, Vandeberg JL, Blangero J, et al. Genetic epidemiology of seropositivity for Trypanosoma cruzi infection in rural Goias, Brazil. Am J Trop Med Hyg. 1997;57(5):538–43.

    Article  CAS  Google Scholar 

  49. Williams-Blangero S, VandeBerg JL, Subedi J, et al. Genes on chromosomes 1 and 13 have significant effects on Ascaris infection. Proc Natl Acad Sci U S A. 2002;99(8):5533–8.

    Article  CAS  Google Scholar 

  50. Williams-Blangero S, Vandeberg JL, Subedi J, et al. Localization of multiple quantitative trait loci influencing susceptibility to infection with Ascaris lumbricoides. J Infect Dis. 2008a;197(1):66–71.

    Article  Google Scholar 

  51. Williams-Blangero S, Vandeberg JL, Subedi J, et al. Two quantitative trait loci influence whipworm (Trichuris trichiura) infection in a Nepalese population. J Infect Dis. 2008b;197(8):1198–203.

    Article  Google Scholar 

  52. Williams-Blangero S, Criscione CD, VandeBerg JL, et al. Host genetics and population structure effects on parasitic disease. Philos Trans R Soc Lond Ser B Biol Sci. 2012;367(1590):887–94.

    Article  Google Scholar 

  53. Wong TY, Loon SC, Saw SM. The epidemiology of age related eye diseases in Asia. Br J Ophthalmol. 2006;90(4):506–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is funded by the National Eye Institute of the National Institutes of Health (grant number EY024384 to MPJ, SWB). Sight-correcting glasses, in part, were kindly donated by the Texas Lions Eyeglass Recycling Center, Midland, Texas. We thank Bashu Dev Adhikari, Pradeep Banjara, Bhim Bdr Jirel, Samana Jirel, Sanjita Jirel, Nukesh Maharjan, Manish Poudel, Tika Rai, Gautam Sherpa, Dr. Mohan Shrestha, Nirag Suwal, and Tom Tripathi from the Tilganga Institute of Ophthalmology and Cecilia Castro, Cecilia Colom, Samantha Gomez, and Johnathon Waggoner from the South Texas Diabetes and Obesity Institute for assistance. We thank the Jirel people for their generous collaboration with the Jiri Family Studies over the past 32 years.

Compliance with Ethical Requirements

All procedures were in accordance with the ethical standards of and approved by the University of Texas Rio Grande Valley Institutional Review Board (IRB# 2016-093-05) and the National Health Research Council of Nepal (Reg. No. 177/2014). Procedures were in accordance with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all individuals prior to participating in the study. All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew P. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnson, M.P. et al. (2019). Genetic Research on Ocular Health and Disease in a Population from Nepal. In: Prakash, G., Iwata, T. (eds) Advances in Vision Research, Volume II. Essentials in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-13-0884-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0884-0_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0883-3

  • Online ISBN: 978-981-13-0884-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics