Skip to main content

Genetics of Ocular Diseases in Malaysia

  • Chapter
  • First Online:
Advances in Vision Research, Volume II

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 587 Accesses

Abstract

Understanding the role of genetics in clinical practice has evolved drastically in Malaysia. However, the understanding of genetics in ocular diseases is still at the infancy. In this chapter, we summarize the publications on genetic studies involving Malaysian population on glaucoma, age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, and retinoblastoma. Potential susceptibility genetic markers for primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG) were identified through single gene analysis and genome-wide association study (GWAS). TGF-ß signaling pathway is the potential susceptibility gene for POAG. MYOC gene was also identified in a large Malay family with juvenile-onset open-angle glaucoma (JOAG). Single nucleotide polymorphism (SNP) of VEGF+405 may play a role in wet age-related macular degeneration in Malaysian population, while SNP of 2245G/A was found to be associated with diabetic retinopathy, possibly through NF-κβ-mediated pro-inflammatory pathway. Exome-wide association studies (EWAS) on a pilot cohort of 20 premature Malaysian infants, different loci of SNPs in LRP5, FZD4, ZNF408 (chromosome 10), and KIF 11 (chromosome 11) genes were identified. No specific hot spot in RB1 gene in Malaysian children with retinoblastoma was found. In general, more exploration is needed in understanding the genetic influences in ocular diseases in Malaysia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tee ES, Lopez JB, Ng KH, Lim PKC, Radin Shamilah RH, Tan TH, Harvindar KG, Balraj P, Khor SC. 100 years of Institute for Medical Research (1900–2000), Institute Medical Research; 2000.

    Google Scholar 

  2. Population distribution and basic demographic characteristic report. National Census 2010, Department of Statistic, Malaysia.

    Google Scholar 

  3. Hu DN. Prevalence and mode of inheritance of major genetic eye diseases in China. J Med Genet. 1987;24:584–8.

    Article  CAS  Google Scholar 

  4. Kannabiran C. Molecular and functional genetics of inherited eye disorders in India. Acta Ophthalmol 2008;86.

    Google Scholar 

  5. 2017 World population data sheet. http://www.prb.org/Publications/Datasheets/2017/2017-world-population-data-sheet.aspx. Accessed 26 Oct 2017.

  6. Salowi MA, Hussein E, Ngah NF, Kadir ZA, Rahmat J. Malaysia National Eye Survey Report 2014.

    Google Scholar 

  7. Fan BJ, Leung YF, Wang N, Lam SC, Liu Y, Tan OS, Pang CP. Genetic and environmental risk factors for primary open-angle glaucoma. Chin Med J. 2004;117:706–10.

    CAS  PubMed  Google Scholar 

  8. Gong G, Kosoko-Lasaki O, Haynatzki GR, Wilson MR. Genetic dissection of myocilin glaucoma. Hum Mol Genet. 2004;13(Suppl 1):R91–R102.

    Article  CAS  Google Scholar 

  9. Wiggs JL, Damji KF, Haines JL, Pericak-Vance MA, Allingham RR. The distinction between juvenile and adult-onset primary open-angle glaucoma. Am J Hum Genet. 1996;58(1):243.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wolf RC, Klaver CC, Ramrattan RS, van Duijn CM, Hofman A, de Jong PT. Genetic risk of primary open-angle glaucoma. Population-based familial aggregation study. Arch Ophthalmol. 1998;116(12):1640–5.

    Article  Google Scholar 

  11. Kong X, Chen Y, Chen X, Sun X. Influence of family history as a risk factor on primary angle closure and primary open angle glaucoma in Chinese population. J Ophthalmol Epid. 2011;18(5):226–32.

    Google Scholar 

  12. Coleman AL, Miglior S. Risk factors for glaucoma onset and progression. Surv Ophthalmol. 2008;53(6):S3–S10.

    Article  Google Scholar 

  13. Monemi S, Spaeth G, Da Silva A, Popinchalk S, Ilitchev E, Liebman J, Ritch R, Heon E, Crick RP, Child A, Sarfarazi M. Identification of a novel adult-onset primary open-angle glaucoma (POAG) on 5q22.1. Hum Mol Genet. 2005;14(6):725–33.

    Article  CAS  Google Scholar 

  14. Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, Heon E, Krupin T, Ritch R, Kreutzer D, Crick RP, Sarfarazi M. Adult-onset primary open angle glaucoma caused by mutations in optineurin. Science. 2002;295(5557):1077–9.

    Article  CAS  Google Scholar 

  15. Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR, Sunden SL, Nishimura D, Clark AF, Nystuen A, Nichols BE, Mackey DA, Ritch R, Kalenak JW, Craven ER, Sheffield VC. Identification of a gene that causes primary open angle glaucoma. Science. 1997;275(5300):668–70.

    Article  CAS  Google Scholar 

  16. Richards JE, Lichter PR, Boehnke M, Uro JLA, Torrez D, Wong D, Johnson AT. Mapping of a gene for autosomal dominant juvenile-onset open-angle glaucoma to chromosome 1q. Am J Hum Genet. 1994;54:62–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Nguyen TD, Chen P, Huang WD, Chen H, Johnson D, Polansky JR. Gene structure and properties of TIGR, an olfactomedin-related glycoprotein cloned from glucocorticoid-induced trabecular meshwork cells. J Biol Chem. 1998;273(11):6341–58.

    Article  CAS  Google Scholar 

  18. Bal RS, Anholt RR. Formation of extracellular mucous matrix of olfactory neuroepithelium: identification of partially glycosylated and nonglycosylated precursors of olfactomedin. Biochemistry. 1993;32(4):1047–53.

    Article  CAS  Google Scholar 

  19. Hewitt AW, Mackey DA, Craig JE. Myocilin allele-specific glaucoma phenotype database. Hum Mutat. 2008;29:207–11.

    Article  CAS  Google Scholar 

  20. Fingert JH, Heon E, Liebman JM, Yamamoto T, Craig JE, Rait J, Kawase K, Hoh ST, Buys YM, Dickinson J, Hockey RR, Williams-Lyn D, Trope G, Kitazawa Y, Ritch R, Mackey DA, Alward WL, Sheffield VC, Stone EM. Analysis of Myocilin mutations in 1703 glaucoma patients from five different populations. Hum Mol Genet. 1999;8:899–905.

    Article  CAS  Google Scholar 

  21. Mimiwati Z, Nurliza K, Marini M, Liza-Sharmini AT. Identification of MYOC gene mutation and polymorphism in a large Malay family with juvenile-onset open angle glaucoma. Mol Vis. 2014;20:714–23.

    PubMed Central  Google Scholar 

  22. Adam MF, Belmouden A, Binisti P, Brézin AP, Valtot F, Béchetoille A, Dascotte JC, Copin B, Gomez L, Chaventré A, Bach JF, Garchon HJ. Recurrent mutations in a single exon encoding the evolutionarily conserved olfactomedin-homology domain of TIGR in familial open-angle glaucoma. Hum Mol Genet. 1997;6:2091–7.

    Article  CAS  Google Scholar 

  23. Sripriya S, Uthra S, Sangeetha R, George RJ, Hemamalini A, Paul PG, Amali J, Vijaya L, Kumaramanickavel G. Low frequency of Myocilin mutations in Indian primary open-angle glaucoma patients. Clin Genet. 2004;65:333–7.

    Article  CAS  Google Scholar 

  24. Pang CP, Leung YF, Fan B, Baum L, Tong WC, Lee WS, Chua JKH, Fan DSP, Liu Y. Lam DSC.TIGR/MYOC gene sequence alterations in individuals with and without primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2002;43:3231–5.

    PubMed  Google Scholar 

  25. Rose R, Balakrishnan A, Muthusamy K, Arumugam P, Shanmugam S, Gopalswamy J. Myocilin mutations among POAG patients from two populations of Tamil Nadu, South India, a comparative analysis. Mol Vis. 2011;17:3243–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nathanson JA. Adrenergic regulation of intraocular pressure: identification of ß2-adrenergic-stimulated adenylate cyclase in ciliary process epithelium. Proc Natl Acad Sci U S A. 1980;77:7420–4.

    Article  CAS  Google Scholar 

  27. Johnson M. The ß-adrenoceptor. Am J Respir Crit Care. 1998;158(5):S146–53.

    Article  CAS  Google Scholar 

  28. Kobilka BK, Dixon RAF, Frielle T, Dohlman HG, Bolanowski MA, Sigal IS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ. cDNA for the human beta 2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci U S A. 1987;84:46–50.

    Article  CAS  Google Scholar 

  29. Liza-Sharmini AT. Pharmacogenetics of glaucoma: the role of beta2 adrenoreceptor and prostanoid (FP) receptor gene polymorphisms in pressure lowering effect of topical timolol and latanoprost in Malaysian population. Submitted as thesis for PhD degree in University College London; 2012.

    Google Scholar 

  30. Astin M, Stjernschantz J. Mechanism of prostaglandin E2-, F2alpha- and latanoprost acid-induced relaxation of submental veins. Eur J Pharmacol. 1997;340:195–201.

    Article  CAS  Google Scholar 

  31. Betz R, Lagercrantz J, Kedra D, Dumanski JP, Nordenskjöld A. Genomic structure, 5′ flanking sequences, and precise localization in 1P31.1 of the human prostaglandin F receptor gene. Biochem Biophys Res Commun. 1999;254:413–6.

    Article  CAS  Google Scholar 

  32. Vielhauer GA, Fujino H, Regan JW. Cloning and localization of hFPs: a six-transmembrane mRNA splice variant of the human FP prostanoid receptor. Arch Biochem Biophys. 2004;421:175–85.

    Article  CAS  Google Scholar 

  33. Zahary MN, Peng HB, Ling CL, Tajudin LSA, Alwi Z. A report of a SNP EX3 1209A>G of prostaglandin F receptor gene among Malaysian. Intern Med J. 2007;14:89–91.

    Google Scholar 

  34. Peng HB, Zahary MN, Tajudin LS, Chieng LL, Cheong MT, Mohamad Ros S, Azman Z, Bin AZ. A novel single nucleotide polymorphism, IVS2 −97A>T, in the prostaglandin F2alpha receptor gene was identified among the Malaysian patients with glaucoma. Kobe J Med Sci. 2007;53:49–52.

    CAS  PubMed  Google Scholar 

  35. Kodisvary RM, Neoh YL, Zahary N, Rajasunthari T, Cheong MT, Zilfalil BA, Liza-Sharmini AT. Association of ocular biometry and PTGFR gene in primary angle closure. Intern Med J. 2015;22(6):478–83.

    Google Scholar 

  36. Gottesman H, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003;160(4):636–45.

    Article  Google Scholar 

  37. Charlesworth KPL, Dyer T, et al. The path to open angle glaucoma gene discovery: endophenotypic status of intraocular pressure, cup-to-disc ratio and central corneal thickness. Invest Ophthalmol Vis Sci. 2010;51(7):3509–14.

    Article  Google Scholar 

  38. Sanfilippo PG, Hewit AW, Hammond CJ, Mackay DA. The heritability of ocular traits. Surv Ophthalmol. 2010;55:561–3.

    Article  Google Scholar 

  39. Miller SJ. Genetics of closed-angle glaucoma. J Med Genet. 1970;7:250–2.

    Article  CAS  Google Scholar 

  40. George R, Paul PG, Baskaran M, et al. Ocular biometry in occludable angles and angle closure glaucoma: a population based survey. Br J Ophthalmol. 2003;87:399–402.

    Article  CAS  Google Scholar 

  41. Foster PJ, Devereux JG, Alsbirk PH, Lee PS, Uranchimeg D, Machin D, Johnson GJ, Baasanhu J. Detection of gonioscopically occludable angles and primary angle closure glaucoma by estimation of limbal chamber depth in Asians: modified grading scheme. Br J Ophthalmol. 2000;84:186–92.

    Google Scholar 

  42. Wang IJ, Chiang TH, Shih YF, et al. The association of single nucleotide polymorphisms in the MMP-9 genes with susceptibility to acute primary angle closure glaucoma in Taiwanese patients. Mol Vis. 2006;12:1223–32.

    CAS  PubMed  Google Scholar 

  43. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827–39.

    Article  CAS  Google Scholar 

  44. Sharif NA, Kelly CR, Crider JY. Human trabecular meshwork cell responses induced by bimatoprost, travoprost, unoprostone, and other FP prostaglandin receptor agonist analogues. Invest Ophthalmol Vis Sci. 2003;44:715–21.

    Article  Google Scholar 

  45. Vithana EN, Chiea-Chuen K, Qiao C, Nongpiur ME, George R, Li-Jia C, Do T, Abu-Amero K, Huang CK, Low S, Liza-Sharmini AT, Shamira AP, Ching-Yu C, Xu L, Jia H, Ching-Lin H, Sim KS, Ren-Yi W, Tham CCY, Chew PTK, Su DH, Oen FT, SSarangapani NS, Osman EA, Hon-Tym W, Tang G, Fan S, Meng H, Huong DTL, Wang H, Feng B, Baskaran M, Shantha B, Ramprasad VL, Kumaramanickavel G, Iyengar SK, How AC, Lee KY, Sivakumaran TA, Yong VHK, Ting SML, Li Y, Ya-Xing W, Wan-Ting T, Sim X, Lavanya R, Cornes BK, Ying-Feng Z, Wong TT, Seng-Chee L, Yong VKY, Waseem N, Azhany Y, Kee-Seng C, Allingham RR, Hauser MA, Lam DSC, Hibberd ML, Bhattacharya SS, Zhang M, Yik YT, Tan DT, Jonas JB, E-Shyong T, Seang-Mei S, Al-Obeidan SA, Liu J, Chau TNB, Simmons CP, Jin-Xin B, Yi-Xin Z, Foster PJ, Vijaya L, Wong TY, Chi-Pui P, Wang N, Aung T. Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma. Nat Genet. 2012;44(10):1142–6.

    Article  CAS  Google Scholar 

  46. Pullimero P, Bauer C, Stutz J, Citi S. PLEKHA is an adherence junction proteins with a tissue distribution and subcellular localization distinct from ZO-1 and E-cadherin. PLoS One. 2010;5:e12207.

    Article  Google Scholar 

  47. Harris TJ, Tepass U. Adherens junction from molecules to morphogenesis. Nat Rev Mol Cell Biol. 2010;11:502–14.

    Article  CAS  Google Scholar 

  48. Richards AJ, et al. A family with Stickler syndrome type 2 has a mutation in the COL11A1 gene resulting in the substitution of glycine 97 by valine in α1(X1) collagen. Hum Mol Genet. 1996;5:1339–43.

    Article  CAS  Google Scholar 

  49. Michael I, Shmoish M, Walton DS, Levenberg S. Interactions between trabecular meshwork cells and lens epithelial cells: a possible mechanism in infantile aphakic glaucoma. Invest Ophthalmol Vis Sci. 2008;49:3981–7.

    Article  Google Scholar 

  50. Khor CC, Tan D, Jia H, Nakano M, George R, Abu-Amero K, Duvesh R, Chen LJ, Li Z, Nongpiur ME, Perera SA, Qiao C, Liza Sharmini AT, et al. Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma. Nat Genet. 2016;48:1–9.

    Article  Google Scholar 

  51. Gregorio-King CC, McLeod JL, Collier FM, Collier GR, Bolton KR, Van Der Meer GJ, Apostolopoulos J, Kirkland MA. MERPI: a mammalian ependymin-related protein gene differentially expressed in hematopoietic cells. Gene. 2002;286:249–57.

    Article  CAS  Google Scholar 

  52. Shen Z, Ye Y, Kauttu T, Seppänen H, Vainionpää S, Wang S, Mustonen H, Puolakkainen P. Novel focal adhesion protein kindling-2 promotes the invasion of gastric cancer cells through phosphorylation of integrin β1 and β3. J Surg Oncol. 2013;108:106–12.

    Article  CAS  Google Scholar 

  53. Lachkar Y, Bouassida W. Drug-induced acute angle closure glaucoma. Curr Opin Ophthalmol. 2007;18:129–33.

    Article  Google Scholar 

  54. KimYS NG, Lewandoski M, Jetten AM. GLIS3, a novel member of the GLIS subfamily of Krüppel-like zinc finger proteins with repressor and activation functions. Nucleic Acids Res. 2003;31:5513–52.

    Article  Google Scholar 

  55. Nongpiur ME, Khor CC, Jia H, Cornes BK, Chen LJ, Chunyan Q, Nair KS, Cheong CY, et al. ABCC5, a gene that influences the anterior chamber depth, is associated with primary angle closure glaucoma. PLoS Genet. 2014;10(3):e1004089.

    Article  Google Scholar 

  56. Li Z, Allingham RR, Nakano M, Jia L, Chen Y, Ikedo Y, et al. A common variant near TGFBR3 is associated with primary open angle glaucoma. Hum Mol Genet. 2015;24(13):3880–92.

    Article  CAS  Google Scholar 

  57. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308(5720):385–9. https://doi.org/10.1126/science.1109557. PubMed PMID: 15761122; PubMed Central PMCID: PMCPMC1512523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Edwards AO, Ritter R 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science. 2005;308(5720):421–4. https://doi.org/10.1126/science.1110189.

    Article  CAS  PubMed  Google Scholar 

  59. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, et al. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308(5720):419–21. https://doi.org/10.1126/science.1110359.

    Article  CAS  PubMed  Google Scholar 

  60. Dewan A, Liu M, Hartman S, Zhang SS, Liu DT, Zhao C, et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science. 2006;314(5801):989–92. https://doi.org/10.1126/science.1133807.

    Article  CAS  PubMed  Google Scholar 

  61. Jakobsdottir J, Conley YP, Weeks DE, Mah TS, Ferrell RE, Gorin MB. Susceptibility genes for age-related maculopathy on chromosome 10q26. Am J Hum Genet. 2005;77(3):389–407. https://doi.org/10.1086/444437. PubMed PMID: 16080115; PubMed Central PMCID: PMCPMC1226205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang Z, Camp NJ, Sun H, Tong Z, Gibbs D, Cameron DJ, et al. A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science. 2006;314(5801):992–3. https://doi.org/10.1126/science.1133811.

    Article  CAS  PubMed  Google Scholar 

  63. Cheng CY, Yamashiro K, Chen LJ, Ahn J, Huang L, Huang L, et al. New loci and coding variants confer risk for age-related macular degeneration in East Asians. Nat Commun. 2015;6:6063. https://doi.org/10.1038/ncomms7063. PubMed PMID: 25629512; PubMed Central PMCID: PMCPMC4317498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mohamad NA, Ramachandran V, Ismail P, Mohd Isa H, Chan YM, Ngah NF, et al. VEGF polymorphisms among neovascular age-related macular degenerative subjects in a multiethnic population. Genet Test Mol Biomarkers. 2017;21:600–7.

    Article  CAS  Google Scholar 

  65. Habibi I, Sfar I, Chebil A, Kort F, Bouraoui R, Jendoubi-Ayed S, et al. Vascular endothelial growth factor genetic polymorphisms and susceptibility to age-related macular degeneration in Tunisian population. Biomark Res. 2014;2:15. https://doi.org/10.1186/2050-7771-2-15. PubMed PMID: 25165559; PubMed Central PMCID: PMCPMC4145361.

    Article  PubMed  PubMed Central  Google Scholar 

  66. IDF. International Diabetes Federation Diabetes Atlas 2014 Revision 2014 [cited 2015 25 May ]. 6th. Available from: http://www.idf.org/diabetesatlas

  67. WHO. Prevention of blindness and visual impairment: priority eye diseases 2004 [cited 2015 25 May]. Available from: http://www.who.int/blindness/causes/priority/en/index5.html

  68. Goh PP. National eye database study G. Status of diabetic retinopathy among diabetics registered to the diabetic eye registry, National Eye Database, 2007. Med J Malaysia. 2008;63(Suppl C):24–8.

    PubMed  Google Scholar 

  69. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–36. https://doi.org/10.1016/S0140-6736(09)62124-3.

    Article  PubMed  Google Scholar 

  70. Davoudi S, Sobrin L. Novel genetic actors of diabetes-associated microvascular complications: retinopathy, kidney disease and neuropathy. Rev Diabet Stud. 2015;12(3–4):243–59. https://doi.org/10.1900/RDS.2015.12.243. PubMed PMID: 26859656; PubMed Central PMCID: PMCPMC5275753.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Leslie RD, Pyke DA. Diabetic retinopathy in identical twins. Diabetes. 1982;31(1):19–21.

    Article  CAS  Google Scholar 

  72. Bierhaus A, Stern DM, Nawroth PP. RAGE in inflammation: a new therapeutic target? Curr Opin Investig Drugs. 2006;7(11):985–91.

    CAS  PubMed  Google Scholar 

  73. Hudson BI, Stickland MH, Grant PJ. Identification of polymorphisms in the receptor for advanced glycation end product (RAGE) gene: prevalence in type 2 diabetes and ethnic groups. Diabetes. 1998;47(7):1155–7.

    Article  CAS  Google Scholar 

  74. Ng ZX, Kuppusamy UR, Tajunisah I, Fong KC, Koay AC, Chua KH. 2245G/A polymorphism of the receptor for advanced glycation end-products (RAGE) gene is associated with diabetic retinopathy in the Malaysian population. Br J Ophthalmol. 2012;96(2):289–92. https://doi.org/10.1136/bjophthalmol-2011-300658. PubMed PMID: 22116960; PubMed Central PMCID: PMCPMC3261748.

    Article  PubMed  Google Scholar 

  75. Ng ZX, Kuppusamy UR, Iqbal T, Chua KH. Receptor for advanced glycation end-product (RAGE) gene polymorphism 2245G/A is associated with pro-inflammatory, oxidative-glycation markers and sRAGE in diabetic retinopathy. Gene. 2013;521(2):227–33. https://doi.org/10.1016/j.gene.2013.03.062.

    Article  CAS  PubMed  Google Scholar 

  76. Ng ZX, Kuppusamy UR, Poh R, Tajunisah I, Koay AC, Fong KC, et al. Lack of association between Gly82Ser, 1704G/T and 2184A/G of RAGE gene polymorphisms and retinopathy susceptibility in Malaysian diabetic patients. Genet Mol Res. 2012;11(1):455–61. https://doi.org/10.4238/2012.March.1.2.

    Article  CAS  PubMed  Google Scholar 

  77. Ng ZX, Kuppusamy UR, Tajunisah I, Fong KC, Chua KH. Association analysis of −429T/C and −374T/A polymorphisms of receptor of advanced glycation end products (RAGE) gene in Malaysian with type 2 diabetic retinopathy. Diabetes Res Clin Pract. 2012;95(3):372–7. https://doi.org/10.1016/j.diabres.2011.11.005.

    Article  CAS  PubMed  Google Scholar 

  78. Abramson DH, Schefler AC. Update on retinoblastoma. Retina. 2004;24(6):828–48.

    Article  Google Scholar 

  79. Jamalia R, Sunder R, Alagaratnam J, Goh PP. Retinoblastoma registry report – hospital Kuala Lumpur experience. Med J Malaysia. 2010;65(Suppl A):128–30.

    PubMed  Google Scholar 

  80. Ahmad Yusof HRN, Ishak SR, AbRajab NS, Abdul Ghani S, Bachok NS, Syed Abd Aziz SH, Ahmad Tajudin LS, Alagaratnam JV, Lai PS, Nishio H, Alwi ZB. Identification of single nucleotide polymorphism (SNP) 153104 (A to G) of RB1 gene in Malaysian retinoblastoma children and its association with laterality and staging of the disease. Intern Med J. 2010;17(2):129–33.

    Google Scholar 

  81. Ishak SR, Hanafi H, Alagaratnam JV, Zilfalil BA, Tajudin LS. RB pocket domain B mutation frequency in Malaysia. Ophthalmic Genet. 2010;31(3):159–61. https://doi.org/10.3109/13816810.2010.492816.

    Article  CAS  PubMed  Google Scholar 

  82. Siti-Norulhuda HHH, Siti-Raihan I, Jamalia RAN, Ismail S, Khaliddin NZA, Ahmad Tajudin LS. Mutational analysis in N- and C- termini of RB1 gene among sporadic retinoblastoma patients in Malaysia. Intern Med J. 2012;19(4):369–72.

    Google Scholar 

  83. Valverde JR, Alonso J, Palacios I, Pestana A. RB1 gene mutation up-date, a meta-analysis based on 932 reported mutations available in a searchable database. BMC Genet. 2005;6:53. https://doi.org/10.1186/1471-2156-6-53. PubMed PMID: 16269091; PubMed Central PMCID: PMCPMC1298292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mohd Khalid MK, Yakob Y, Md Yasin R, Wee Teik K, Siew CG, Rahmat J, et al. Spectrum of germ-line RB1 gene mutations in Malaysian patients with retinoblastoma. Mol Vis. 2015;21:1185–90. PubMed PMID: 26539030; PubMed Central PMCID: PMCPMC4605750.

    PubMed  PubMed Central  Google Scholar 

  85. Darlow BA, Hutchinson JL, Henderson-Smart DJ, Donoghue DA, Simpson JM, Evans NJ, et al. Prenatal risk factors for severe retinopathy of prematurity among very preterm infants of the Australian and New Zealand Neonatal Network. Pediatrics. 2005;115(4):990–6. https://doi.org/10.1542/peds.2004-1309.

    Article  PubMed  Google Scholar 

  86. Patz A, Hoeck LE, De La Cruz E. Studies on the effect of high oxygen administration in retrolental fibroplasia. I Nursery observations. Am J Ophthalmol. 1952;35(9):1248–53.

    Article  CAS  Google Scholar 

  87. Shastry BS. Genetic susceptibility to advanced retinopathy of prematurity (ROP). J Biomed Sci. 2010;17:69. https://doi.org/10.1186/1423-0127-17-69. PubMed PMID: 20738858; PubMed Central PMCID: PMCPMC2933676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dickinson JL, Sale MM, Passmore A, FitzGerald LM, Wheatley CM, Burdon KP, et al. Mutations in the NDP gene: contribution to Norrie disease, familial exudative vitreoretinopathy, and retinopathy of prematurity. Clin Exp Ophthalmol. 2006;34(7):682–8. https://doi.org/10.1111/j.1442-9071.2006.01314.x.

    Article  PubMed  Google Scholar 

  89. Haider MZ, Devarajan LV, Al-Essa M, Kumar H. A C597→A polymorphism in the Norrie disease gene is associated with advanced retinopathy of prematurity in premature Kuwaiti infants. J Biomed Sci. 2002;9(4):365–70. doi: 65008.PubMed PMID: 12145535.

    CAS  PubMed  Google Scholar 

  90. Dailey WA, Gryc W, Garg PG, Drenser KA. Frizzled-4 variations associated with retinopathy and intrauterine growth retardation: a potential marker for prematurity and retinopathy. Ophthalmology. 2015;122(9):1917–23. https://doi.org/10.1016/j.ophtha.2015.05.036.

    Article  PubMed  Google Scholar 

  91. Ells A, Guernsey DL, Wallace K, Zheng B, Vincer M, Allen A, et al. Severe retinopathy of prematurity associated with FZD4 mutations. Ophthalmic Genet. 2010;31(1):37–43. https://doi.org/10.3109/13816810903479834.

    Article  CAS  PubMed  Google Scholar 

  92. MacDonald ML, Goldberg YP, Macfarlane J, Samuels ME, Trese MT, Shastry BS. Genetic variants of frizzled-4 gene in familial exudative vitreoretinopathy and advanced retinopathy of prematurity. Clin Genet. 2005;67(4):363–6. https://doi.org/10.1111/j.1399-0004.2005.00408.x.

    Article  CAS  PubMed  Google Scholar 

  93. Hiraoka M, Takahashi H, Orimo H, Hiraoka M, Ogata T, Azuma N. Genetic screening of Wnt signaling factors in advanced retinopathy of prematurity. Mol Vis. 2010;16:2572–7. PubMed PMID: 21151595; PubMed Central PMCID: PMCPMC3000231.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kondo H, Kusaka S, Yoshinaga A, Uchio E, Tawara A, Tahira T. Genetic variants of FZD4 and LRP5 genes in patients with advanced retinopathy of prematurity. Mol Vis. 2013;19:476–85. PubMed PMID: 23441120; PubMed Central PMCID: PMCPMC3580992.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ali AA, Hussien NF, Samy RM, Husseiny KA. Polymorphisms of vascular endothelial growth factor and retinopathy of prematurity. J Pediatr Ophthalmol Strabismus. 2015;52(4):245–53. https://doi.org/10.3928/01913913-20150506-02.

    Article  PubMed  Google Scholar 

  96. Kalmeh ZA, Azarpira N, Mosallaei M, Hosseini H, Malekpour Z. Genetic polymorphisms of vascular endothelial growth factor and risk for retinopathy of prematurity in South of Iran. Mol Biol Rep. 2013;40(7):4613–8. https://doi.org/10.1007/s11033-013-2554-y.

    Article  CAS  PubMed  Google Scholar 

  97. Kaya M, Cokakli M, Berk AT, Yaman A, Yesilirmak D, Kumral A, et al. Associations of VEGF/VEGF-receptor and HGF/c-met promoter polymorphisms with progression/regression of retinopathy of prematurity. Curr Eye Res. 2013;38(1):137–42. https://doi.org/10.3109/02713683.2012.731550.

    Article  CAS  PubMed  Google Scholar 

  98. Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: signaling pathways, biological responses, and therapeutic inhibition. Trends Pharmacol Sci. 2001;22(4):201–7. PubMed PMID: 11282421.

    Article  CAS  Google Scholar 

  99. Hartnett ME, Morrison MA, Smith S, Yanovitch TL, Young TL, Colaizy T, et al. Genetic variants associated with severe retinopathy of prematurity in extremely low birth weight infants. Invest Ophthalmol Vis Sci. 2014;55(10):6194–203. https://doi.org/10.1167/iovs.14-14841. PubMed PMID: 25118269; PubMed Central PMCID: PMCPMC4188045.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for being included in the study.

Animal Studies

No animal or human studies were carried out by the authors for this article.

Compliance with Ethical Requirements

Author Liza-Sharmini AT has received speaker honorarium by Pfizer Malaysia Sdn Bhd, Novartis Malaysia, and Santen Malaysia. She was involved in clinical trial study sponsored by Allergan.

Author Tengku Ain Kamalden declares that she has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Liza-Sharmini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liza-Sharmini, A.T., Kamalden, T.A. (2019). Genetics of Ocular Diseases in Malaysia. In: Prakash, G., Iwata, T. (eds) Advances in Vision Research, Volume II. Essentials in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-13-0884-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0884-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0883-3

  • Online ISBN: 978-981-13-0884-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics