Advertisement

Applications: PDEs, the T1 Theorem and Related Function Spaces

  • Yoshihiro Sawano
Chapter
Part of the Developments in Mathematics book series (DEVM, volume 56)

Abstract

As an application of what we have been gathering, we investigate partial differential equations. In Sect. 5.1, we develop a theory of function spaces on domains so as to consider partial differential equations on domains. To consider some solution operators we take up the pseudo-differential operators in Sect. 5.2. We apply what we have obtained to various equations such as heat equations, Schrödinger equations and wave equations in Sect. 5.3.

References

  1. 4.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics, V, vol 140, 2nd edn. Elsevier/Academic Press, New York (2003)Google Scholar
  2. 5.
    Auscher, P., Tchamitchian, P.: Square root problem for divergence operators and related topics. Astérisque 249, viii+172 (1998)Google Scholar
  3. 9.
    Burenkov, V.I.: Sobolev Spaces on Domains. Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 137, 312pp. B. G. Teubner Verlagsgesellschaft mbH, Stuttgart (1998)Google Scholar
  4. 14.
    Cannone, M.: Ondelettes, Paraproduits et Navier–Stokes, Diderot Editeur. Arts et Sciences, Paris/New York/Amsterdam (1995)Google Scholar
  5. 18.
    David, G.: Wavelets and Singular Integrals on Curves and Surfaces. Lecture Notes in Mathematics, vol. 1465. Springer, Berlin/New York (1991)Google Scholar
  6. 21.
    Dunford, N., Schwartz, J.: Linear Operators. Part I. General Theory. With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original. Wiley Classics Library. A Wiley-Interscience Publication. Wiley, New York (1988)Google Scholar
  7. 22.
    Duoandikoetxea, J.: Fourier Analysis. Translated and revised from the 1995 Spanish original by D. Cruz-Uribe. Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence (2001)Google Scholar
  8. 25.
    Evans, C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence (1998)Google Scholar
  9. 28.
    Frazier, M.: The T1 Theorem for Triebel–Lizorkin Spaces. Harmonic Analysis and Partial Differential Equations. Lecture Notes in Mathematics, vol. 1384, pp. 168–191. Springer, Berlin (1987)Google Scholar
  10. 29.
    Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley Theory and the Study of Function Spaces. CBMS Regional Conference Series in Mathematics, vol. 79. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence (1991)Google Scholar
  11. 33.
    Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250. Springer, New York (2009)Google Scholar
  12. 35.
    Gröchenig, K.: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2001)Google Scholar
  13. 36.
    Haroske, D.D.: Envelopes and Sharp Embeddings of Function Spaces. Chapman & Hall/CRC Research Notes in Mathematics, vol. 437, x+227pp. Chapman & Hall/CRC, Boca Raton (2007)Google Scholar
  14. 37.
    Haroske, D.D., Triebel, H.: Distributions, Sobolev Spaces, Elliptic Equations. EMS Textbooks in Mathematics, x+294pp. European Mathematical Society (EMS), Zurich (2008)Google Scholar
  15. 42.
    Hörmander, L.: Linear Partial Differential Operators. Springer, Berlin/Göttingen/Heidelberg (1962)zbMATHGoogle Scholar
  16. 48.
    Krantz, S.G.: Function Theory of Several Complex Variables. The Wadsworth & Brooks/Cole Mathematics Series, 2nd edn. Pacific Grove: Wadsworth & Brooks/Cole Advanced Books & Software (1992)Google Scholar
  17. 50.
    Jost, J.: Riemannian Geometry and Geometric Analysis, 5th edn. Springer, Berlin/New York. ISBN:978-3-540-77340-5Google Scholar
  18. 51.
    Kufner, A.: Weighted Sobolev Spaces. Teubner-Texte zur Mathematik, vol. 31. Teubner, Leipzig (1980)Google Scholar
  19. 53.
    Lions, J.L., Magnes, E.: Problems aux limites non homogenes et applications I and II. Dunod, Paris (1968)Google Scholar
  20. 55.
    Lunardi, A.: Analytic Semi-groups and Optimal Regularity in Parabolic Problems. Progress in Nolninear Differential Equations and Their Applications, vol. 16. Birkhäuser, Basel (1995)Google Scholar
  21. 56.
    Lunardi, A.: Interpolation Theory, 2nd edn. Appunti. Scuola Normale Superiore di Pisa, Edizioni della Normale, Pisa (2009)Google Scholar
  22. 57.
    Maz’ya, V.G.: Sobolev Spaces. Springer Series in Soviet Mathematics. Springer, Berlin (1985). Translated from the RussianGoogle Scholar
  23. 59.
    McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations, xiv+357pp. Cambridge University Press, Cambridge (2000)Google Scholar
  24. 64.
    Meyer, Y.: Wavelets and Operators. Translated by D.H. Salinger, Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge (1992)Google Scholar
  25. 67.
    Murai, T.: A Real Variable Method for the Cauchy Transform, and Analytic Capacity. Lecture Notes in Mathematics, vol. 1307. Springer, Berlin (1988)Google Scholar
  26. 71.
    Peetre, J.: New Thoughts on Besov Spaces. Duke University Mathematics Series, vol. I. Mathematics Department, Duke University, Durham (1976)Google Scholar
  27. 75.
    Raymond, X.S.: Elementary Introduction to the Theory of Pseudodifferential Operators. Studies in Advanced Mathematics, viii+108pp. CRC Press, Boca Raton (1991)Google Scholar
  28. 85.
    Stein, E.M.: Singular Integral and Differential Property of Functions. Princeton University Press, Princeton (1970)Google Scholar
  29. 86.
    Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)zbMATHGoogle Scholar
  30. 91.
    Strichartz, R.: A Guide to Distribution Theory and Fourier Transforms. Studies in Advanced Mathematics, x+213pp. CRC Press, Boca Raton (1994)Google Scholar
  31. 92.
    Tanabe, H.: Functional Analytic Methods for Partial Differential Equations (English Summary). Monographs and Textbooks in Pure and Applied Mathematics, vol. 204, pp. x+414. Marcel Dekker, New York (1997)Google Scholar
  32. 93.
    Taylor, M.: Pseudodifferential Operators. Princeton Mathematical Series, vol. 34. Princeton University Press, Princeton (1981)Google Scholar
  33. 94.
    Taylor, M.: Tools for PDE. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials. Mathematical Surveys and Monographs, vol. 81. American Mathematical Society, Providence (2000)Google Scholar
  34. 99.
    Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)Google Scholar
  35. 100.
    Triebel, H.: Theory of Function Spaces II. Birkhäuser, Basel (1992)Google Scholar
  36. 101.
    Triebel, H.: Fractal and Spectra. Birkhäuser, Basel (1997)Google Scholar
  37. 103.
    Triebel, H.: The Structure of Functions. Birkhäuser, Basel (2000)Google Scholar
  38. 104.
    Triebel, H.: Theory of Function Spaces III. Birkhäuser, Basel (2006)Google Scholar
  39. 107.
    Triebel, H.: Entropy Numbers of Quadratic Forms and Their Applications to Spectral Theory. In: Brown, B.M., Lang, J., Wood, I.G. (eds.) Spectral Theory, Function Spaces and Inequalities. Operator Theory, Advances and Applications, vol. 219, pp. 243–262. Birkhauser/Springer, Basel (2012)zbMATHGoogle Scholar
  40. 116.
    Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Corrected reprint of the 1971 edition, Graduate Texts in Mathematics, vol. 94. Springer, New York/Berlin (1983)Google Scholar
  41. 119.
    Yoshida, K.: Functional Analysis. Springer, Berlin (1995)CrossRefGoogle Scholar
  42. 120.
    Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, vol. 2005, xi+281pp. Springer, Berlin (2010)Google Scholar
  43. 128.
    Albrecht, D., Duong, D., McIntosh, A.: Operator theory and harmonic analysis. Workshop in Analysis and Geometry (1995); Proceedings of the Centre for Mathematics and Its Applications. ANU 34, 77–136 (1996)Google Scholar
  44. 131.
    Amann, H.: Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Math. Nachr. 186, 5–56 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  45. 132.
    Amann, H.: On the strong solvability of the Navier–Stokes equations. J. Math. Fluid. Mech. 2, 16–98 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  46. 148.
    Auscher, P., Frey, D.: On the well-posedness of parabolic equations of Navier-Stokes type with BMO −1 data. J. Inst. Math. Jussieu 16(5), 947–985 (2017)CrossRefMathSciNetzbMATHGoogle Scholar
  47. 149.
    Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., Tchamitchian, P.: The solution of the Kato square root problem for second order elliptic operators on \({\mathbb R}^n\). Ann. Math. (2) 156(2), 633–654 (2002)Google Scholar
  48. 151.
    Auscher, P., McIntosh, A., Nahmod, A.: Holomorphic functional calculi of operators, quadratic estimates and interpolation. Indiana Univ. Math. J. 46, 375–403 (1997)Google Scholar
  49. 157.
    Babich, V.M.: On the extension of functions (Russian). Uspehi Matem. Nauk (N.S.) 8(2(54)), 111–113 (1953)Google Scholar
  50. 167.
    Bényi, A., Gröchenig, K., Okoudjou, K., Rogers, L.G.: Unimodular Fourier multipliers for modulation spaces. J. Funct. Anal. 246, 366–384 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  51. 173.
    Besov, O.V.: An example in the theory of imbedding theorems (Russian). Dokl. Akad. Nauk SSSR 143, 1014–1016 (1962)MathSciNetGoogle Scholar
  52. 174.
    Besov, O.V.: On the continuation of functions with preservation of the second-order integral modulus of smoothness (Russian). Mat. Sb. (N.S.) 58(100), 673–684 (1962)Google Scholar
  53. 175.
    Besov, O.V.: Extension of functions with preservation of differential-difference properties in L p (Russian). Dokl. Akad. Nauk SSSR 150, 963–966 (1963)MathSciNetGoogle Scholar
  54. 176.
    Besov, O.V.: Extension of functions to the frontier, with preservation of differential-difference properties in L p (Russian). Mat. Sb. (N.S.) 66(108), 80–96 (1965)Google Scholar
  55. 177.
    Besov, O.V.: On the density of finitary functions and the extension of classes of differentiable functions (Russian). Dokl. Akad. Nauk SSSR 165, 738–741 (1965)MathSciNetGoogle Scholar
  56. 178.
    Besov, O.V.: Continuation of certain classes of differentiable functions beyond the boundary of a region (Russian). Trudy Mat. Inst. Steklov. 77, 35–44 (1965)MathSciNetGoogle Scholar
  57. 179.
    Besov, O.V.: Continuation of functions from L pl and W pl (Russian). Trudy Mat. Inst. Steklov. 89, 5–17 (1967)MathSciNetGoogle Scholar
  58. 180.
    Besov, O.V.: The density of finite functions in L p, θ and the extension of functions. (Russian), Trudy Mat. Inst. Steklov. 89, 18–30 (1967)Google Scholar
  59. 185.
    Besov, O.V.: The behavior of differentiable functions on a nonsmooth surface. (Russian), Studies in the theory of differentiable functions of several variables and its applications, IV. Trudy Mat. Inst. Steklov. 117, 3–10, 343 (1972)Google Scholar
  60. 186.
    Besov, O.V.: Estimates of moduli of smoothness of functions on domains, and imbedding theorems (Russian). Studies in the theory of differentiable functions of several variables and its applications, IV. Trudy Mat. Inst. Steklov. 117, 22–46, 343 (1972)Google Scholar
  61. 189.
    Besov, O.V.: Estimates for the moduli of continuity of abstract functions defined in a domain (Russian). Studies in the theory of differentiable functions of several variables and its applications, V. Trudy Mat. Inst. Steklov. 131, 16–24, 244 (1974)Google Scholar
  62. 190.
    Besov, O.V.: The growth of the mixed derivative of a function in \(C^{(l_1,l_2)}\) (Russian). Mat. Zametki 15, 355–362 (1974)Google Scholar
  63. 195.
    Besov, O.V.: Weight estimates of mixed derivatives in a domain (Russian). Studies in the theory of differentiable functions of several variables and its applications, VIII. Trudy Mat. Inst. Steklov. 156, 16–21, 262 (1980)Google Scholar
  64. 196.
    Besov, O.V.: Density of compactly supported functions in a weighted Sobolev space (Russian). Studies in the theory of differentiable functions of several variables and its applications, IX. Trudy Mat. Inst. Steklov. 161, 29–47 (1983)Google Scholar
  65. 197.
    Besov, O.V.: Integral representations of functions in a domain with the flexible horn condition, and imbedding theorems (Russian). Dokl. Akad. Nauk SSSR 273(6), 1294–1297 (1983)MathSciNetGoogle Scholar
  66. 198.
    Besov, O.V.: Integral representations of functions and embedding theorems for a domain with a flexible horn condition (Russian). Studies in the theory of differentiable functions of several variables and its applications, X. Trudy Mat. Inst. Steklov. 170, 12–30, 274 (1984)Google Scholar
  67. 204.
    Besov, O.V.: Interpolation of spaces of differentiable functions defined in a domain (Russian). Trudy Mat. Inst. Steklov. 201, Issled. po Teor. Differ. Funktsii Mnogikh Peremen. i ee Prilozh. 15, 26–42 (1992); Translation in Proc. Steklov Inst. Math. 2(201), 21–34 (1994)Google Scholar
  68. 208.
    Besov, O.V.: Interpolation of spaces of differentiable functions on a domain (Russian). Tr. Mat. Inst. Steklova 214, Issled. po Teor. Differ. Funkts. Mnogikh Perem. i ee Prilozh. 17, 59–82 (1997); Translation in Proc. Steklov Inst. Math. 3(214), 54–76 (1996)Google Scholar
  69. 210.
    Besov, O.V.: Interpolation and embeddings of function spaces \(B^s_{p q}\) and \(F^s_{p q}\) on a domain (Russian). Dokl. Akad. Nauk 357(6), 727–730 (1997)Google Scholar
  70. 237.
    Besov, O.V.: Embedding of a weighted Sobolev space and properties of the domain. ISSN:1064–5624. Doklady Math. 90(3), 754–757 (2014); Doklady Akademii Nauk 459(6), 663–666 (2014)Google Scholar
  71. 238.
    Besov, O.V.: Embedding of Sobolev space in the case of the limit exponent (Russian). Mat. Zametki 98(4), 498–510 (2015)CrossRefMathSciNetGoogle Scholar
  72. 239.
    Besov, O.V.: Embedding of a Sobolev space in the case of a limiting exponent. Dokl. Akad. Nauk 462(2), 131–134 (2015); Translation in Dokl. Math. 91(3), 277–280 (2015)Google Scholar
  73. 240.
    Besov, O.V.: Spaces of functions of positive smoothness on irregular domains. ISSN:1064–5624, Doklady Math. 93(1), 13–15 (2016); Doklady Akademii Nauk 466(2), 133–136 (2016)Google Scholar
  74. 243.
    Besov, O.V., Il’in, V.P.: A natural extension of the class of domains in imbedding theorems (Russian). Mat. Sb. (N.S.) 75(117), 483–495 (1968)Google Scholar
  75. 251.
    Birman, M.S~., Solomjak, M.Z.: Piecewise polynomial approximations of functions of classes \(W_p^{\alpha }\). Mat. Sb. (N.S.) 73(115), 331–355 (1967)Google Scholar
  76. 258.
    Bony, J.M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires (French). [Symbolic calculus and propagation of singularities Quantitative analysis in Sobolev imbedding theorems for and applications to spectral theory, nonlinear partial differential equations] Ann. Sci. École Norm. Sup. (4) 14(2), 209–246 (1981)Google Scholar
  77. 284.
    Bourgain, J., Pavlovic, N.: Ill-posedness of the Navier–Stokes equations in a critical space in 3D. J. Funct. Anal. 255, 2233–2247 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  78. 293.
    Bui, H.Q., Duong, X.T., Yan, L.: Calderón reproducing formulas and new Besov spaces associated with operators. Adv. Math. 229(4), 2449–2502 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  79. 297.
    Burenkov, V.I.: Additivity of the spaces \(W^r_p\) and \(B^r_p\), and embedding theorems for domains of general form (Russian). Trudy Mat. Inst. Steklov. 105, 30–45 (1969)Google Scholar
  80. 299.
    Burenkov, V.I.: The approximation of functions in the space C r(Ω) by functions of compact support, for an arbitrary open set Ω (Russian). Studies in the theory of differentiable functions of several variables and its applications, IV. Trudy Mat. Inst. Steklov. 117, 62–74, 343 (1972)Google Scholar
  81. 304.
    Burenkov, V.I.: Extension theory for Sobolev spaces on open sets with Lipschitz boundaries. In: Nonlinear Analysis, Function Spaces and Applications, Prague, vol. 6, pp. 1–49 (1998). Academy of Sciences of the Czech Republic, Prague (1999)Google Scholar
  82. 305.
    Burenkov, V.I.: Extension theorems for Sobolev and more general spaces for degenerate open sets. In: Proceedings of the Second ISAAC Congress, Fukuoka, vol. 2, pp. 1135–1141 (1999); International Society of Analysis and Applied Computations, vol. 8. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  83. 307.
    Burenkov, V.I., Gorbunov, A.L.: A two-sided estimate for the minimal norm of the extension operator for Sobolev spaces (Russian). Dokl. Akad. Nauk 330(6), 680–682 (1993); Translation in Russian Acad. Sci. Dokl. Math. 47(3), 589–592 (1993)Google Scholar
  84. 308.
    Burenkov, V.I., Gorbunov, A.L.: Sharp estimates for the minimal norm of extension operators for Sobolev spaces (Russian). Izv. Ross. Akad. Nauk Ser. Mat. 61(1), 3–44 (1997); Translation in Izv. Math. 61(1), 1–43 (1997)Google Scholar
  85. 309.
    Burenkov, V.I., Kalyabin, G.A.: Lower estimates of the norms of extension operators for Sobolev spaces on the halfline. Math. Nachr. 218, 19–23 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  86. 312.
    Burenkov, V.I., Schulze, B.W., Tarkhanov, N.N.: Extension operators for Sobolev spaces commuting with a given transform. Glasgow Math. J. 40(2), 291–296 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  87. 313.
    Burenkov, V.I., Senusi, A.: Estimates for constants in additivity inequalities for function spaces. (Russian) Sibirsk. Mat. Zh. 35(1), 24–40 (1994); Translation in Siberian Math. J. 35(1), 21–36 (1994)Google Scholar
  88. 323.
    Calderón, A.P.: Lebesgue spaces of differentiable functions and distributions. In: Partial Differential Equations. Proceedings of Symposia in Pure Mathematics, vol. 4, pp. 33–49. American Mathematical Society, Providence (1961)Google Scholar
  89. 335.
    Calderón, A.P., Vaillancourt, R.: On the boundedness of pseudo-differential operators. J. Math. Soc. Japan 23, 374–378 (1971)CrossRefMathSciNetzbMATHGoogle Scholar
  90. 336.
    Cannone, M., Planchon, F.: Self-similar solutions for Navier–Stokes equations in \({\mathbb R}^3\). Commun. PDE 21, 179–193 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  91. 351.
    Chae, D.: On the well-posedness of the Euler equations in the Triebel-Lizorkin spaces. Commun. Pure Appl. Math. 55, 654–678 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  92. 353.
    Chandler-Wilde, S.N., Hewett, D.P., Moiola, A.: Sobolev spaces on non-Lipschitz subsets of \({\mathbb R}^n\) with application to boundary integral equations on fractal screens. Integr. Equ. Oper. Theory 87(2), 179–224 (2017)Google Scholar
  93. 364.
    Christ, M.: The extension problem for certain function spaces involving fractional order s of differentiability. Ark. Mat. 22, 63–81 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  94. 365.
    Christ, M.: A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 39–40, 601–628 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  95. 366.
    Christ, M.: Lectures on Singular Integral Operators. CBMS Regional Conference Series in Mathematics, vol. 77. American Mathematical Society, Providence (1990)Google Scholar
  96. 379.
    Cohen, A., Dahmen, W., DeVore, R.A.: Multiscale decompositions on bounded domains. Trans. Am. Math. Soc. 352(8), 3651–3685 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  97. 382.
    Coifman, R.R., Meyer, Y.: Au delà des opérateurs pseudo-différentiels. Astérisque, vol. 57. Société Mathématique de France, Paris (1978)Google Scholar
  98. 402.
    Dahlke, S.: Besov regularity for elliptic boundary value problems in polygonal domains. Appl. Math. Lett. 12(6), 31–36 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  99. 403.
    Dahlke, S., DeVore, R.A.: Besov regularity for elliptic boundary value problems. Commun. PDE 22(1–2), 1–16 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  100. 404.
    Dahlke, S., Novak, E., Sickel, W.: Optimal approximation of elliptic problems by linear and nonlinear mappings. I. J. Complexity 22(1), 29–49 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  101. 407.
    Dahlke, S., Novak, E., Sickel, W.: Optimal approximation of elliptic problems by linear and nonlinear mappings. IV. Errors in L 2 and other norms. J. Complexity 26(1), 102–124 (2010)Google Scholar
  102. 408.
    Dahlke, S., Sickel, W.: Besov regularity for the Poisson equation in smooth and polyhedral cones. In: Vladimir Maz’ya (ed.) Sobolev Spaces in Mathematics. II. International Mathematical Series (New York), vol. 9, pp. 123–145. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  103. 409.
    Dahlke, S., Sickel, W.: On Besov regularity of solutions to nonlinear elliptic partial differential equations. Rev. Mat. Complut. 26(1), 115–145 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  104. 413.
    David, G., Journé, J.L.: A boundedness criterion for generalized Calderón–Zygmund operators. Ann. Math. 120, 371–397 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  105. 414.
    David, G., Journé, J.L., Semmes, S.: Opérateurs de Calderón–Zygmund, fonctions para-accrótives et interpolation (French). [Calderón–Zygmund operators, para-accretive functions and interpolation] Rev. Mat. Iberoamericana 1(4), 1–56 (1985)Google Scholar
  106. 417.
    Deng, D., Han, Y.: T1 theorems for Besov and Triebel–Lizorkin spaces. Sci. China Ser. A 48(5), 657–665 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  107. 441.
    Duong, X.T., Yan, L.: New function spaces of BMO type, the John–Nirenberg inequality, interpolation, and applications. Commun. Pure Appl. Math. 58, 1375–1420 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  108. 442.
    Duong, X.T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18(4), 943–973 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  109. 446.
    Edmunds, D.E., Haroske, D.D.: Spaces of Lipschitz type, embeddings and entropy numbers. Diss. Math. (Rozprawy Mat.) 380, 1–43 (1999)Google Scholar
  110. 447.
    Edmunds, D.E., Haroske, D.D.: Embeddings in spaces of Lipschitz type, entropy and approximation numbers, and applications. J. Approx. Theory 104(2), 226–271 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  111. 449.
    Edmunds, D.E., Triebel, H.: Entropy numbers and approximation numbers in function spaces. Proc. London Math. Soc. 58(3), 137–152 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  112. 478.
    Franke, J., Runst, T.: Regular elliptic boundary value problems in Besov-Triebel-Lizorkin space. Math. Nachr. 174, 113–149 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  113. 483.
    Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93(1), 34–170 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  114. 488.
    Fujita, H., Kato, T.: On the Navier–Stokes initial value problem I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)CrossRefMathSciNetzbMATHGoogle Scholar
  115. 491.
    Gaffney, M.P.: The conservation property of the heat equation on Riemannian manifolds. Commun. Pure Appl. Math. 12, 1–11 (1959)CrossRefMathSciNetzbMATHGoogle Scholar
  116. 501.
    Giga, Y.: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 61, 186–212 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  117. 502.
    Giga, Y., Inui, K., Matsui, S.: On the Cauchy problem for the Navier–Stokes equations with nondecaying initial data. Quaderni di Matematica 4, 28–68 (1999)MathSciNetzbMATHGoogle Scholar
  118. 503.
    Giga, Y., Miyakawa, T.: Solutions in L r of the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 89, 267–281 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  119. 511.
    Gol’dman, M.L., Haroske, D.D.: Estimates for continuity envelopes and approximation numbers of Bessel potentials. J. Approx. Theory 172, 58–85 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  120. 512.
    Goldŝteîn, V.M.: Extension of functions with first generalized derivatives from plane domains (Russian). Dokl. Akad. Nauk SSSR 257(2), 268–271 (1981)MathSciNetGoogle Scholar
  121. 518.
    Grafakos, L., Torres, R.H.: Pseudodifferential operators with homogeneous symbols. Michigan Math. J. 46, 261–269 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  122. 535.
    Han, Y.S.: Calderón-type reproducing formula and the Tb theorem. Rev. Mat. Ibero. 10, 51–91 (1994)CrossRefzbMATHGoogle Scholar
  123. 542.
    Han, Y.S., Hofmann, S.: T1 Theorem for Besov and Triebel–Lizorkin spaces. Trans. Am. Math. Soc. 337, 839–853 (1993)zbMATHGoogle Scholar
  124. 549.
    Hansen, M., Sickel, W.: Best m-term approximation and tensor product of Sobolev and Besov spaces–the case of noncompact embeddings. East J. Approx. 16(4), 345–388 (2010)MathSciNetzbMATHGoogle Scholar
  125. 551.
    Hansen, M., Sickel, W.: Best m-term approximation and Sobolev-Besov spaces of dominating mixed smoothness–the case of compact embeddings. Constr. Approx. 36(1), 1–51 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  126. 556.
    Haroske, D.D.: Approximation numbers in some weighted function spaces. J. Approx. Theory 83(1), 104–136 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  127. 557.
    Haroske, D.D.: Some logarithmic function spaces, entropy numbers, applications to spectral theory. Diss. Math. (Rozprawy Mat.) 373, 1–59 (1998)Google Scholar
  128. 558.
    Haroske, D.D.: Logarithmic Sobolev spaces on \({\mathbb R}^n\); entropy numbers, and some applications. Forum Math. 12(3), 257–313 (2000)Google Scholar
  129. 559.
    Haroske, D.D.: On more general Lipschitz spaces. Z. Anal. Anwend. 19(3), 781–799 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  130. 560.
    Haroske, D.D.: Growth envelope functions in Besov and Sobolev spaces, local versus global results. Math. Nachr. 280(9–10), 1094–1107 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  131. 563.
    Haroske, D.D., Moura, S.D., Continuity envelopes of spaces of generalised smoothness, entropy and approximation numbers. J. Approx. Theory 128(2), 151–174 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  132. 564.
    Haroske, D.D., Moura, S.D., Continuity envelopes and sharp embeddings in spaces of generalized smoothness. J. Funct. Anal. 254(6), 1487–1521 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  133. 566.
    Haroske, D.D., Schneider, C.: Besov spaces with positive smoothness on \({\mathbb R}^n\), embeddings and growth envelopes. J. Approx. Theory 161(2), 723–747 (2009)Google Scholar
  134. 567.
    Haroske, D.D., Skrzypczak, L.: Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. I. Rev. Mat. Complut. 21(1), 135–177 (2008)MathSciNetzbMATHGoogle Scholar
  135. 568.
    Haroske, D.D., Skrzypczak, L.: Spectral theory of some degenerate elliptic operators with local singularities. J. Math. Anal. Appl. 371(1), 282–299 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  136. 569.
    Haroske, D.D., Skrzypczak, L.: Entropy numbers of embeddings of function spaces with Muckenhoupt weights, III. Some limiting cases. J. Funct. Spaces Appl. 9(2), 129–178 (2011)CrossRefzbMATHGoogle Scholar
  137. 570.
    Haroske, D.D., Skrzypczak, L.: Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, II. General weights. Ann. Acad. Sci. Fenn. Math. 36(1), 111–138 (2011)CrossRefzbMATHGoogle Scholar
  138. 576.
    Haroske, D.D., Triebel, H.: Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators. I. Math. Nachr. 167, 131–156 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  139. 577.
    Haroske, D.D., Triebel, H.: Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators. II. Math. Nachr. 168, 109–137 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  140. 578.
    Haroske, D.D., Triebel, H.: Wavelet bases and entropy numbers in weighted function spaces. Math. Nachr. 278(1–2), 108–132 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  141. 592.
    Hofmann, S., Martell, J.: L p bounds for Riesz transforms and square roots associated to second order elliptic operators. Publ. Mat. 47, 497–515 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  142. 607.
    Hörmander, L.: Pseudo-differential operators and hypoelliptic equations. In: Singular Integrals. Proceedings of Symposia in Pure Mathematics. vol. 10. American Mathematical Society, Providence (1967)Google Scholar
  143. 608.
    Hörmander, L.: Pseudo-differential operators of type 1, 1. Commun. PDE 13(9), 1085–1111 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  144. 614.
    Iwabuchi, T., Matsuyama, T., Taniguchi, K.: Boundedness of spectral multipliers for Schrödinger operators on open sets. Rev. Mat. Iberoam. 34(3), 1277–1322 (2018)CrossRefMathSciNetzbMATHGoogle Scholar
  145. 615.
    Iwabuchi, T., Matsuyama, T., Taniguchi, K.: Besov spaces on open sets. arxivGoogle Scholar
  146. 650.
    Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147(1–2), 71–88 (1981)CrossRefMathSciNetzbMATHGoogle Scholar
  147. 652.
    Judoviĉ, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations (Russian). Dokl. Akad. Nauk SSSR 138, 805–808 (1961)MathSciNetGoogle Scholar
  148. 658.
    Kalyabin, G.A.: Functional classes of Lizorkin-Triebel type in domains with Lipschitz boundary (Russian). Dokl. Akad. Nauk SSSR 271, 795–798 (1983)MathSciNetGoogle Scholar
  149. 659.
    Kalyabin, G.A.: Theorems on extensions, multipliers and diffeomorphisms for generalized Sobolev–Liouville classes in domains with Lipschitz boundary. Trudy Mat. Inst. Steklov 172, 173–186 (1985)MathSciNetzbMATHGoogle Scholar
  150. 660.
    Kato, T.: Fractional powers of dissipative operators. J. Math. Soc. Japan 13, 246–274 (1961)CrossRefMathSciNetzbMATHGoogle Scholar
  151. 661.
    Kato, T.: Strong L p-solutions of Navier–Stokes equations in \({\mathbb R}^n\) with applications to weak solutions. Math. Z. 187, 471–480 (1984)Google Scholar
  152. 663.
    Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  153. 674.
    von Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22–35 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  154. 677.
    Kobayashi, T., Muramatu, T.: Abstract Besov space approach to the nonstationary Navier–Stokes equations. Math. Methods Appl. Sci. 15(9), 599–620 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  155. 682.
    Kobayashi, M., Sawano, Y.: Molecular decomposition of the modulation spaces M p, q and its application to the pseudo-differential operators. Osaka J. Math. 47(4), 1029–1053 (2010)MathSciNetzbMATHGoogle Scholar
  156. 687.
    Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Commun. PDE 19, 959–1014 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  157. 698.
    Kuhn, T., Leopold, H.G., Sickel, W., Skrzypczak, L.: Entropy numbers of Sobolev embeddings of radial Besov spaces. J. Approx. Theory 121(2), 244–268 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  158. 699.
    Kuhn, T., Leopold, H.G., Sickel, W., Skrzypczak, L.: Entropy numbers of embeddings of weighted Besov spaces. Constr. Approx. 23(1), 61–77 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  159. 700.
    Kuhn, T., Leopold, H.G., Sickel, W., Skrzypczak, L.: Entropy numbers of embeddings of weighted Besov spaces. III. Weights of logarithmic type. Math. Z. 255(1), 1–15 (2007)zbMATHGoogle Scholar
  160. 707.
    Leray, J.: Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)zbMATHGoogle Scholar
  161. 711.
    Leopold, H.G., Skrzypczak, L.: Entropy numbers of embeddings of some 2-microlocal Besov spaces. J. Approx. Theory 163(4), 505–523 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  162. 712.
    Leopold, H.G., Skrzypczak, L.: Compactness of embeddings of function spaces on quasi-bounded domains and the distribution of eigenvalues of related elliptic operators. Proc. Edinb. Math. Soc. (2) 56(3), 829–851 (2013)Google Scholar
  163. 718.
    Marschall, J.: On the boundedness and compactness of nonregular pseudo-differential operators. Math. Nachr. 175, 231–262 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  164. 733.
    Lions, J.L., Magnes, E.: Problemi ai limiti non omogenei III. Ann. Scuola Norm. Sup. Pisa 15, 41–103 (1961)MathSciNetGoogle Scholar
  165. 735.
    Lions, J.L., Magnes, E.: Problemi ai limiti non omogenei V. Ann. Scuola Norm. Sup. Pisa 16, 1–44 (1962)MathSciNetzbMATHGoogle Scholar
  166. 769.
    McIntosh, A.: Square roots of operators and applications to hyperbolic PDEs. In: Proceedings of Centre for Mathematical Analysis, vol. 5, pp. 124–136. Australian National University, Canberra (1984)Google Scholar
  167. 776.
    Meyer, Y., Yang, Q.X.: Continuity of Calderón–Zygmund operators on Besov and Triebel–Lizorkin spaces. Anal. Appl. 6(1), 51–81 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  168. 781.
    Mitrea M., Taylor, M.: Sobolev and Besov space estimates for solutions to second order PDE on Lipschitz domains in manifolds with Dini or Hölder continuous metric tensors. Commun. PDE 30(1–3), 1–37 (2005)CrossRefzbMATHGoogle Scholar
  169. 783.
    Miyachi, A.: On some estimates for the wave equation in L p and H p. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27(2), 331–354 (1980)MathSciNetzbMATHGoogle Scholar
  170. 786.
    Miyachi, A.: On the extension properties of Triebel–Lizorkin spaces. Hokkaido Math. J. 27, 273–301 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  171. 790.
    Miyachi, A., Nicola, F., Rivetti, S., Tabacco, A., Tomita, N.: Estimates for unimodular Fourier multipliers on modulation spaces. Proc. Am. Math. Soc. 137(11), 3869–3883 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  172. 792.
    Miyachi, A., Tomita, N.: Boundedness criterion for bilinear Fourier multiplier operators. Tohoku Math. J. 66, 55–76 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  173. 793.
    Miyazaki, Y.: New proofs of the trace theorem of Sobolev spaces. Proc. Japan Acad. Ser. A Math. Sci. 84(7), 112–116 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  174. 794.
    Miyazaki, Y.: Sobolev trace theorem and the Dirichlet problem in the unit disk. Milan J. Math. 82(2), 297–312 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  175. 795.
    Miyazaki, Y.: Liouville’s theorem and heat kernels. Expo. Math. 33, 101–104 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  176. 796.
    Mizuhara, T.: On Fourier multipliers of homogeneous Besov spaces. Math. Nachr. 133, 155–161 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  177. 816.
    Muramatu, T.: On Besov spaces of functions defined in general regions. Publ. Res. Inst. Math. Sci. Kyoto Univ. 6, 515–543 (1970/1971)CrossRefMathSciNetzbMATHGoogle Scholar
  178. 817.
    Muramatu, T.: On Besov spaces and Sobolev spaces of generalized functions definded on a general region. Publ. Res. Inst. Math. Sci. 9, 325–396 (1973/1974)CrossRefMathSciNetzbMATHGoogle Scholar
  179. 833.
    Nazarov, F., Treil, S., Volberg, A.: The Tb-theorem on non-homogeneous spaces. Acta Math. 190(2), 151–239 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  180. 841.
    Nguyen, V.K., Sickel, W.: Weyl numbers of embeddings of tensor product Besov spaces. J. Approx. Theory 200, 170–220 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  181. 846.
    Nikolski’i, S.M.: On the solution of the polyharmonic equation by a variational method (Russian). Dokl. Akad. Nauk SSSR 88, 409–411 (1953)Google Scholar
  182. 854.
    Novak, E., Triebel, H.: Function spaces in Lipschitz domains and optimal rates of convergence for sampling. Constr. Approx. 23(3), 325–350 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  183. 881.
    Planchon, F.: Self-similar solutions and semi-linear wave equations in Besov spaces. J. Math Pures Appl. 79(8), 809–820 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  184. 892.
    Rochberg, R.R., Tachizawa, K.: Pseudodifferential operators, Gabor frames, and local trigonometric bases. In: Gabor Analysis and Algorithms. Applied and Numerical Harmonic Analysis, pp. 171–192. Birkhäuser, Boston (1998)Google Scholar
  185. 896.
    Runst, T.: Paradifferential operators in spaces of Triebel–Lizorkin and Besov type. Z. Anal. Anwend. 4(6), 557–573 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  186. 897.
    Runst, T.: Pseudodifferential operators of the “exotic” class \(L^0_{1,1}\) in spaces of Besov and Triebel–Lizorkin-type. Ann. Glob. Anal. Geom. 3, 13–28 (1985)Google Scholar
  187. 900.
    Rychkov, V.S.: On restrictions and extension of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains. J. London Math. Soc. (2) 60, 237–257 (1999)Google Scholar
  188. 901.
    Rychkov, V.S.: Intrinsic characterizations of distribution spaces on domains. Studia Math. 127, 277–298 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  189. 902.
    Rychkov, V.S.: On a theorem of Bui, Paluszyński, and Tailbeson. Proc. Steklov Inst. Math. 227, 280–292 (1999)zbMATHGoogle Scholar
  190. 903.
    Rychkov, V.S.: Intrinsic characterizations of distribution spaces on domains. Studia Math. 127(3), 277–298 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  191. 912.
    Sawada, O.: On time-local solvability of the Navier–Stokes equations in Besov spaces. Adv. Diff. Eq. 8(4), 385–412 (2003)MathSciNetzbMATHGoogle Scholar
  192. 931.
    Schneider, C.: Trace operators in Besov and Triebel–Lizorkin spaces. Z. Anal. Anwend. 29(3), 275–302 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  193. 973.
    Sjöstrand, J.: An algebra of pseudodifferential operators. Math. Res. Lett. 1(2), 185–192 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  194. 990.
    Skrzypczak, L.: Entropy numbers of Trudinger-Strichartz embeddings of radial Besov spaces and applications. J. Lond. Math. Soc. (2) 69(2), 465–488 (2004)Google Scholar
  195. 991.
    Skrzypczak, L.: On approximation numbers of Sobolev embeddings of weighted function spaces. J. Approx. Theory 136(1), 91–107 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  196. 992.
    Skrzypczak, L.: Approximation and entropy numbers of compact Sobolev embeddings. In: Approximation and Probability. Banach Center Publications, vol. 72, pp. 309–326. Polish Academy of Sciences, Warsaw (2006)Google Scholar
  197. 994.
    Skrzypczak, L., Tomasz, B.: Approximation numbers of Sobolev embeddings of radial functions on isotropic manifolds. J. Funct. Spaces Appl. 5(1), 27–48 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  198. 995.
    Skrzypczak, L., Tomasz, B.: Entropy of Sobolev embeddings of radial functions and radial eigenvalues of Schrodinger operators on isotropic manifolds. Math. Nachr. 280(5–6), 654–675 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  199. 997.
    Skrzypczak, L., Vybíral, J.: Corrigendum to the paper: “On approximation numbers of Sobolev embeddings of weighted function spaces” [J. Approx. Theory 136 91–107 (2005)][165121]. J. Approx. Theory 156(1), 116–119 (2009)Google Scholar
  200. 1004.
    Solncev, J.K.: On the estimation of a mixed derivative in L p(G). Trudy Mat. Inst. Steklov 64, 211–238 (1961). English translation in Am. Math. Soc. Transl. (2) 79 (1969)Google Scholar
  201. 1014.
    Strichartz, R.S.: Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44, 705–713 (1977)CrossRefMathSciNetzbMATHGoogle Scholar
  202. 1021.
    Sugimoto, M., Tomita, N.: A counterexample for boundedness of pseudo-differential operators on modulation spaces. Proc. Am. Math. Soc. 136(5), 1681–1690 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  203. 1022.
    Sugimoto, M., Tomita, N.: Boundedness properties of pseudo-differential operators and Calderón–Zygmund operators on modulation spaces. J. Fourier Anal. Appl. 14(1), 124–143 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  204. 1024.
    Tachizawa, K.: The boundedness of pseudodifferential operators on modulation spaces. Math. Nachr. 168, 263–277 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  205. 1025.
    Tachizawa, K.: The pseudodifferential operators and Wilson bases. J. Math. Pures Appl. (9) 75(6), 509–529 (1996)Google Scholar
  206. 1028.
    Takada, R.: Counterexamples of commutator estimates in the Besov and the Triebel-Lizorkin spaces related to the Euler equations. SIAM J. Math. Anal. 42, 2473–2483 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  207. 1033.
    Toft, J.: Continuity properties for modulation spaces, with applications to pseudo-differential calculus–I. J. Funct. Anal. 207, 399–429 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  208. 1034.
    Toft, J.: Continuity and Schatten properties for pseudo-differential operators on modulation spaces. Oper. Theory Adv. Appl. 172, 173–206 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  209. 1036.
    Torres, R.H.: Continuity properties of pseudodifferential operators of type 1, 1. Commun. PDE 15(9), 1313–1328 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  210. 1037.
    Torres, R.H.: Boundedness results for operators with singular kernels on distribution spaces. Mem. Am. Math. Soc. 90(442), viii+172 (1991)Google Scholar
  211. 1041.
    Triebel, H.: Interpolation theory for function spaces of Besov type defined in domains. I. Math. Nachr. 57, 51–85 (1973)CrossRefMathSciNetzbMATHGoogle Scholar
  212. 1042.
    Triebel, H.: Interpolation theory for function spaces of Besov type defined in domains. II. Math. Nachr. 58, 63–86 (1973)CrossRefMathSciNetzbMATHGoogle Scholar
  213. 1053.
    Triebel, H.: On Besov-Hardy-Sobolev spaces in domains and regular elliptic boundary value problems. The case 0 < p ≤. Commun. PDE 3, 1083–1164 (1978)CrossRefzbMATHGoogle Scholar
  214. 1056.
    Triebel, H.: On the spaces \(F^s_{p,q}\) of Hardy-Sobolev type: Equivalent quasinorms, multipliers, spaces on domains, regular elliptic boundary value problems. Commun. PDE 5, 245–291 (1980)Google Scholar
  215. 1068.
    Triebel, H.: Atomic decompositions of \(F^s_{p q}\) spaces. Applications to exotic pseudodifferential and Fourier integral operators. Math. Nachr. 144, 189–222 (1989)Google Scholar
  216. 1074.
    Triebel, H.: Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers. Rev. Mat. Complut. 15(2), 475–524 (2002)MathSciNetzbMATHGoogle Scholar
  217. 1076.
    Triebel, H.: Approximation numbers in function spaces and the distribution of eigenvalues of some fractal elliptic operators. J. Approx. Theory 129(1), 1–27 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  218. 1078.
    Triebel, H.: Wavelet para–bases and sampling numbers in function spaces on domains. J. Complexity 23, 468–497 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  219. 1083.
    Triebel, H.: Entropy numbers in function spaces with mixed integrability. Rev. Mat. Complut. 24(1), 169–188 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  220. 1084.
    Triebel, H.: Entropy and approximation numbers of limiting embeddings; an approach via Hardy inequalities and quadratic forms. J. Approx. Theory 164(1), 31–46 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  221. 1086.
    Triebel, H., Winkelvoss, H.: Intrinsic atomic characterizations of function spaces on domains. Math. Z. 221(4), 647–673 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  222. 1101.
    Vodop’yanov, S.K., Gol’dstein, V.M., Latfulllin, T.G.: A criterion for the extension of functions of class \(L_2^1\), from unbounded plane domains. Sibirsk. Mat. Zh. 20, 416–419 (1979). English transl. in Siberian Math. J. 20 (1979)Google Scholar
  223. 1102.
    Vodop’yanov, S.K., Gol’dstein, V.M., Reshetnyak, Y.G.: Geometric properties of functions with generalized first derivatives. Uspekhi Mat. Nauk 34(1(205)), 17–65 (1979). English transl. in Russian Math. Surveys 34 (1979)Google Scholar
  224. 1107.
    Wang, B., Huang, C.: Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations. J. Differ. Equ. 239(1), 213–250 (2007)CrossRefzbMATHGoogle Scholar
  225. 1110.
    Weimar, M.: Almost diagonal matrices and Besov-type spaces based on wavelet expansions. J. Fourier Anal. Appl. 22(2), 251–284 (2016)CrossRefMathSciNetzbMATHGoogle Scholar
  226. 1139.
    Yagi, A.: Coïncidence entre des espaces d’interpolation et des domaines de puissances fractionaires d’opérateurs. C. R. Acad. Sci. Paris (Sér. I) 299, 173–176 (1984)Google Scholar
  227. 1142.
    Yang, D.: T1 theorems on Besov and Triebel–Lizorkin spaces on spaces of homogeneous type and their applications. Z. Anal. Anwend. 22(1), 53–72 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  228. 1171.
    Yoneda, T.: Ill-posedness of the 3D-Navier–Stokes equations in a generalized Besov space near BMO−1. J. Funct. Anal. 258(10), 3376–3387 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  229. 1175.
    Yuan, W., Sawano, Y., Yang, D.: Decompositions of Hausdorff–Besov and Triebel–Lizorkin–Hausdorff spaces and their applications. J. Math. Anal. Appl. 369(2), 736–757 (2010)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yoshihiro Sawano
    • 1
  1. 1.Department of Mathematics and Information ScienceTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations