Decomposition of Function Spaces and Its Applications

  • Yoshihiro Sawano
Part of the Developments in Mathematics book series (DEVM, volume 56)


The field of harmonic analysis dates back to the 19th century; the branch of function spaces dates back to the first half of 20th century, and has its roots in the study of the decomposition of functions using Fourier series and the Fourier transform. This aspect will be stressed for Besov spaces and Triebel–Lizorkin spaces. One of the elementary tools in harmonic analysis is to decompose functions or distributions into linear sums of elementary units.


  1. 2.
    Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory.Grundlehren der Mathematischen Wissenschaften, vol. 314 Springer, Berlin (1996)Google Scholar
  2. 4.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics, V, vol 140, 2nd edn. Elsevier/Academic Press, New York (2003)Google Scholar
  3. 6.
    Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin/Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  4. 7.
    Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin/New York (1976)Google Scholar
  5. 10.
    Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)zbMATHGoogle Scholar
  6. 11.
    Brudnyı̆, Y.A., Krugljak, N.: Interpolation Functors and Interpolation Spaces, vol. I. Translated from the Russian by Natalie Wadhwa. With a preface by Jaak Peetre. North-Holland Mathematical Library, vol. 47, xvi+718pp. North-Holland Publishing Co., Amsterdam (1991)Google Scholar
  7. 12.
    Bourdaud, G.: The functional calculus in Sobolev spaces. In: Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte Math., vol. 133, pp. 127–142. Teubner, Stuttgart/Leipzig (1993)Google Scholar
  8. 17.
    Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)Google Scholar
  9. 19.
    DeVore, R., Lorentz, G.G.: Constructive Approximation. Grundlehren der Mathematischen Wissenschaften, vol. 303. Springer, Berlin (1993)Google Scholar
  10. 23.
    Edmunds, D.E., Triebel, H.: Function Spaces. Entropy Numbers and Differential Operators. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  11. 29.
    Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley Theory and the Study of Function Spaces. CBMS Regional Conference Series in Mathematics, vol. 79. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence (1991)Google Scholar
  12. 30.
    Garling, D.J.H.: Inequalities: A Journey into Linear Analysis. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  13. 31.
    García-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, vol. 116. North-Holland, Amsterdam/New York (1985)Google Scholar
  14. 33.
    Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250. Springer, New York (2009)Google Scholar
  15. 35.
    Gröchenig, K.: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2001)Google Scholar
  16. 40.
    Hernández, E., Weiss, G.: A First Course on Wavelets. CRC Press, Boca Raton (1996)CrossRefzbMATHGoogle Scholar
  17. 41.
    Holschneider, M.: Wavelets. An Analytic Tool. Clarendon Press, Oxford (1995)zbMATHGoogle Scholar
  18. 43.
    Igari, S.: Real Analysis: With an Introduction to Wavelet Theory. Translated by S. Igari, Translations of Mathematical Monographs, vol. 177. American Mathematical Society, Providence (1998)Google Scholar
  19. 46.
    Katznelson, Y.: An Introduction to Harmonic Analysis. Cambridge University Press, Cambridge/New York (2004)CrossRefzbMATHGoogle Scholar
  20. 58.
    Maz’ya, V.G., Shaposhnikova, T.O.: Theory of Sobolev Multipliers with Applications to Differential and Integral Operators for a Description of the Set of All Pointwise Multipliers \(M(B^s_{p,p})\). Springer, Berlin (2009)Google Scholar
  21. 64.
    Meyer, Y.: Wavelets and Operators. Translated by D.H. Salinger, Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge (1992)Google Scholar
  22. 66.
    Meyer, Y., Coifman, R.R.: Calderón–Zygmund and Multilinear Operators. Translated by D.H. Salinger, Cambridge Studies in Advanced Mathematics, vol. 48. Cambridge University Press, Cambridge (1997)Google Scholar
  23. 68.
    Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis, vol. II. Cambridge University Press, Cambridge (2013)zbMATHGoogle Scholar
  24. 71.
    Peetre, J.: New Thoughts on Besov Spaces. Duke University Mathematics Series, vol. I. Mathematics Department, Duke University, Durham (1976)Google Scholar
  25. 77.
    Rochberg, R., Tabacco, V.A., Vignati, M., Weiss, G.: Interpolation of quasinormed spaces by the complex method. In: “Function Spaces and Applications”. Proceedings of the Conference, Lund, 1986. Lecture Notes in Mathematics, vol. 1302, pp. 91–98. Springer, Berlin (1988)Google Scholar
  26. 78.
    Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order. Nemytskii Operators, and Nolninear Partial Differential Equations. de Gruyter Series in Nolninear Analysis and Applications, vol. 3. Walter de Gruyter Co., Berlin (1996)Google Scholar
  27. 83.
    Sickel, W.: On pointwise multipliers in Besov–Triebel–Lizorkin spaces. In: “Seminar Analysis Karl-Weierstrass Institute 1985/86,” Teubner-Texte Math., vol. 96, pp. 45–103. Teubner, Leipzig (1987)Google Scholar
  28. 90.
    Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, vol. 32. Princeton University Press, Princeton (1971)Google Scholar
  29. 94.
    Taylor, M.: Tools for PDE. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials. Mathematical Surveys and Monographs, vol. 81. American Mathematical Society, Providence (2000)Google Scholar
  30. 98.
    Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)Google Scholar
  31. 99.
    Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)Google Scholar
  32. 100.
    Triebel, H.: Theory of Function Spaces II. Birkhäuser, Basel (1992)Google Scholar
  33. 101.
    Triebel, H.: Fractal and Spectra. Birkhäuser, Basel (1997)Google Scholar
  34. 103.
    Triebel, H.: The Structure of Functions. Birkhäuser, Basel (2000)Google Scholar
  35. 105.
    Triebel, H.: Function Spaces and Wavelets on Domains. EMS Tracts in Mathematics (ETM), vol. 7. European Mathematical Society (EMS), Zürich (2008)Google Scholar
  36. 108.
    Triebel, H.: Faber Systems and Their Use in Sampling, Discrepancy, Numerical Integration. EMS Series of Lectures in Mathematics, viii+107pp. European Mathematical Society (EMS), Zurich (2012)Google Scholar
  37. 110.
    Triebel, H.: Hybrid Function Spaces, Heat and Navier–Stokes Equations. EMS Tracts in Mathematics, vol. 24, x+185pp. European Mathematical Society (EMS), Zürich (2014)Google Scholar
  38. 117.
    Wojtaszczyk, P.: A Mathematical Introduction to Wavelets. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  39. 129.
    Allaoui, S.E., Bourdaud, G.: Localisation uniforme des espaces de Besov et de Lizorkin–Triebel. (French) [Uniform localisation of Besov and Lizorkin-Triebel spaces] Arch. Math. (Basel) 109(6), 551–562 (2017)Google Scholar
  40. 135.
    Antonov, N.Y.: Convergence of Fourier series. Proceedings of the XX Workshop on Function Theory, Moscow (1995). East J. Approx. 2(2), 187–196 (1996)Google Scholar
  41. 139.
    Aronszajn, N.: Boundary values of functions with finite Dirichlet integral. Technical Report, vol. 14, University of Kansas, pp. 77–94 (1955)Google Scholar
  42. 141.
    Asami, K.: Non-smooth decomposition of homogeneous Triebel-Lizorkin spaces with applications to the Marcinkiewicz integral. Int. J. Appl. Math. 30(6), 547–568 (2017)CrossRefMathSciNetGoogle Scholar
  43. 142.
    Ashino, R., Mandai, T.: Wavelet bases for microlocal filtering and the sampling theorem in \(L^p({\mathbb R}^n)\). Appl. Anal. 82(1), 1–24 (2003)Google Scholar
  44. 154.
    Auscher, P., Russ, E., Tchamitchian, T.P.: Hardy Sobolev spaces on strongly Lipschitz domains of \({\mathbb R}^n\). J. Funct. Anal. 218(1), 54–109 (2005)Google Scholar
  45. 170.
    Bergh, J.: Relation between the 2 complex methods of interpolation. Indiana Univ. Math. J. 28(5), 775–778 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  46. 171.
    Besov, O.V.: On a family of function spaces. Embedding theorems and extensions. Dokl. Acad. Nauk SSSR 126, 1163–1165 (1959)zbMATHGoogle Scholar
  47. 172.
    Besov, O.V.: Investigation of a class of function spaces in connection with imbedding and extension theorems. Trudy Mat. Inst. Steklov 60, 42–81 (1961)MathSciNetGoogle Scholar
  48. 188.
    Besov, O.V.: Multiplicative estimates for integral norms of differentiable functions of several variables (Russian). Studies in the theory of differentiable functions of several variables and its applications, V. Trudy Mat. Inst. Steklov. 131, 3–15, 244 (1974)Google Scholar
  49. 191.
    Besov, O.V.: Multiplicative estimates of integral moduli of smoothness (Russian). Studies in the theory of differentiable functions of several variables and its applications, VI. Trudy Mat. Inst. Steklov. 140, 21–26, 286 (1976)Google Scholar
  50. 194.
    Besov, O.V.: Multiplicative estimates of integral moduli of smoothness. Proc. Steklov Inst. Math. 1 (1979)Google Scholar
  51. 203.
    Besov, O.V.: Application of integral representations of functions to interpolation of spaces of differentiable functions and Fourier multipliers. Trudy Mat. Inst. Steklov. 192, 20–34 (1990); English translation in Proc. Steklov Inst. Math. 3, 192 (1993)Google Scholar
  52. 211.
    Besov, O.V.: On the continuation by zero of functions of several variables (Russian). Mat. Zametki 64(3), 351–365 (1998); Translation in Math. Notes 64(3–4), 303–315 (1998)Google Scholar
  53. 242.
    Besov, O.V., ẑabrailov, A.D.D., Interpolation theorems for certain spaces of differentiable functions (Russian). Trudy Mat. Inst. Steklov. 105, 15–20 (1969)Google Scholar
  54. 258.
    Bony, J.M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires (French). [Symbolic calculus and propagation of singularities Quantitative analysis in Sobolev imbedding theorems for and applications to spectral theory, nonlinear partial differential equations] Ann. Sci. École Norm. Sup. (4) 14(2), 209–246 (1981)Google Scholar
  55. 259.
    Bony, J.M.: Second microlocalization and propagation of singularities for semi-linear hyperbolic equations. In: Taniguchi Symposium HERT, Katata, pp. 11–49 (1984)Google Scholar
  56. 260.
    Borup, L., Nielsen, M.: Frame decomposition of decomposition spaces. J. Fourier Anal. Appl. 13(1), 39–70 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  57. 262.
    Bourdaud, G.: Une algèbre maximale d’opérateurs pseudo-différentiels. Commun. PPDE 13(9), 1059–1083 (1988)CrossRefzbMATHGoogle Scholar
  58. 263.
    Bourdaud, G.: Localizations des espaces de Besov. Studia Math. 90, 153–163 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  59. 265.
    Bourdaud, G.: Changes of variable in Besov spaces. II. Forum Math. 12(5), 545–563 (2000)MathSciNetzbMATHGoogle Scholar
  60. 267.
    Bourdaud, G., Cristoforis, M.L., Sickel, W.: Functional calculus on BMO and related spaces. J. Funct. Anal. 189(2), 515–538 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  61. 268.
    Bourdaud, G., Meyer, Y.: Fonctions qui opèrent sur les espaces de Sobolev. J. Funct. Anal. 97, 351–360 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  62. 269.
    Bourdaud, G., Meyer, Y.: Le calcul fonctionnel sous-linèaire dans les espaces de Besov homogèenes. [Sublinear functional calculus in homogeneous Besov spaces] Rev. Mat. Iberoam. 22(2), 725–746, loose erratum (2006)Google Scholar
  63. 270.
    Bourdaud, G., Moussai, M., Sickel, W.: An optimal symbolic calculus on Besov algebras. Ann. Inst. H. Poincaré Anal. Non Lineaire 23(6), 949–956 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  64. 271.
    Bourdaud, G., Moussai, M., Sickel, W.: Towards sharp superposition theorems in Besov and Lizorkin-Triebel spaces. Nonlinear Anal. 68(10), 2889–2912 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  65. 273.
    Bourdaud, G., Moussai, M., Sickel, W.: Composition operators acting on Besov spaces on the real line. Ann. Mat. Pura Appl. (4) 193(5), 1519–1554 (2014)Google Scholar
  66. 274.
    Bourdaud, G., Sickel, W.: Changes of variable in Besov spaces. Math. Nachr. 198, 19–39 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  67. 275.
    Bourdaud, G., Sickel, W.: Composition operators on function spaces with fractional order of smoothness. In: Harmonic Analysis and Nonlinear Partial Differential Equations. RIMS Kokyuroku Bessatsu, vol. B26, pp. 93–132. Research Institute for Mathematical Sciences (RIMS), Kyoto (2011)Google Scholar
  68. 281.
    Bownik, M.: Extrapolation of discrete Triebel–Lizorkin spaces. Math. Nachr. 286(5–6), 492–502 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  69. 283.
    Bourgain, J., Li, D.: Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces. Invent. Math. 201(1), 97–157 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  70. 292.
    Bui, H.Q.: Representation theorems and atomic decomposition of Besov spaces. Math. Nachr. 132, 301–311 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  71. 298.
    Burenkov, V.I.: The approximations of functions from Sobolev spaces by functions with compact support in the case of an arbitrary open set (Russian). Dokl. Akad. Nauk SSSR 202, 259–262 (1972)MathSciNetGoogle Scholar
  72. 306.
    Burenkov, V.I., Gol’dman, M.L.: On the extensions of functions of L p. Trudy Math. Inst. Steklov 150, 31–51 (1979) (English transl. 4, 33–53 (1981))Google Scholar
  73. 315.
    Burenkov, V.I., Verdiev, T.V.: Extension by zero of functions from spaces with generalized smoothness for degenerate domains (Russian). Tr. Mat. Inst. Steklova 227, Issled. po Teor. Differ. Funkts. Mnogikh Perem. i ee Prilozh. 18, 78–91 (1999); Translation in Proc. Steklov Inst. Math. 4(227), 73–86 (1999)Google Scholar
  74. 317.
    Caetano, A.M.: On the type of convergence in atomic representations. Complex Var. Elliptic Equ. 56(10–11), 875–883 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  75. 318.
    Caetano, A.M., Farkas, W.: Local growth envelopes of Besov spaces of generalized smoothness. Z. Anal. Anwend. 25, 265–298 (2006)MathSciNetzbMATHGoogle Scholar
  76. 324.
    Calderón, A.P.: Intermediate spaces and interpolation. Studia Math. Seria specjalna 1, 31–34 (1963)MathSciNetzbMATHGoogle Scholar
  77. 325.
    Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Studia Math. 14(1), 113–190, 46–56 (1964)Google Scholar
  78. 329.
    Calderón, A.P., Torchinsky, A.: Parabolic maximal functions associated with a distribution. II. Adv. Math. 24, 101–171 (1977)CrossRefMathSciNetzbMATHGoogle Scholar
  79. 338.
    Cao, J., Chang, D.C., Fu, Z., Yang, D.: Real interpolation of weighted tent spaces. Appl. Anal. 95(11), 2415–2443 (2016)CrossRefMathSciNetzbMATHGoogle Scholar
  80. 349.
    Carro, M.J., Mastyło, M., Rodríguez-Piazza, L.: Almost everywhere convergent Fourier series. J. Fourier Anal. Appl. 18, 266–286 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  81. 352.
    Chamorro, D., Lemarié-Rieusset, P.G.: Real interpolation method, Lorentz spaces and refined Sobolev inequalities. J. Funct. Anal. 265(12), 3219–3232 (2013)zbMATHGoogle Scholar
  82. 376.
    Cobos, F., Kruglyak, N.: Exact minimizer for the couple (L , BV) and the one-dimensional analogue of the Rudin-Osher-Fatemi model. J. Approx. Theory 163, 481–490 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  83. 381.
    Coifman, R.R., Lions, P.L., Meyer, Y., Semmes, P.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9) 72, 247–286 (1993)Google Scholar
  84. 386.
    Cohen, A., Daubechies, I., Feauveau, J. C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  85. 398.
    Cunanan, J., Tsutsui, Y.: Trace operators on Wiener amalgam spaces. J. Funct. Spaces 2016, Article ID 1710260, 1–6 (2006)Google Scholar
  86. 399.
    Cwikel, M., Milman, M., Sagher, Y.: Complex interpolation of some quasi-Banach spaces. J. Funct. Anal. 65, 339–347 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  87. 400.
    Cwikel, M., Sagher, Y.: Analytic families of operators on some quasi-Banach spaces. Proc. Am. Math. Soc. 102, 979–984 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  88. 436.
    Drihem, D., Moussai, M.: Some embeddings into the multiplier spaces associated to Besov and Lizorkin-Triebel spaces. Z. Anal. Anwend. 21(1), 179–184 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  89. 437.
    Drihem, D., Moussai, M.: On the pointwise multiplication in Besov and Lizorkin–Triebel spaces. Int. J. Math. Math. Sci., Art. ID 76182, 1–18 (2006)zbMATHGoogle Scholar
  90. 477.
    Franke, J.: On the spaces \(F^s_{p q}\) of Triebel–Lizorkin-type: pointwise multipliers and spaces on domains. Math. Nachr. 125, 29–68 (1986)Google Scholar
  91. 479.
    Frazier, M., Jawerth, B.: φ-transform and applications to distribution spaces. In: Function Spaces and Applications, Lund, 1986. Lecture Notes in Mathematics, vol. 1302, pp. 223–246. Springer, Berlin (1988)Google Scholar
  92. 480.
    Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley theory and the study of function spaces. CBMS-AMS Reg. Conf. Ser. 79, 129–132 (1991)MathSciNetzbMATHGoogle Scholar
  93. 482.
    Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34(4), 777–799 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  94. 483.
    Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93(1), 34–170 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  95. 492.
    Gagliardo, E.: Caratterizzazione delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Sem. Mat. Univ. Padova 27, 284–305 (1957)MathSciNetzbMATHGoogle Scholar
  96. 494.
    Gagliardo, E.: Ulteriori proprietà di alcune classi di funzioni in più variabili, Ricerche. Mat. 8, 24–51 (1959)MathSciNetzbMATHGoogle Scholar
  97. 500.
    Georgiadis, A.G., Johnsen, J., Nielsen, M.: Wavelet transforms for homogeneous mixed-norm Triebel–Lizorkin spaces. Monatosh. Math. 183(4), 587–624 (2017)CrossRefMathSciNetzbMATHGoogle Scholar
  98. 506.
    Goncalves, H.F., Kempka, H., Non-smooth atomic decomposition of 2-microlocal spaces and applications to pointwise multipliers. J. Math. Anal. Appl. 434, 1875–1890 (2016)CrossRefMathSciNetzbMATHGoogle Scholar
  99. 509.
    Gol’dman, M.L.: On the extension of functions of \(L^p({\mathbb R}^n)\) in spaces with a large number of dimensions (Russian). Mat. Zametki 25, 513–520 (1979)Google Scholar
  100. 515.
    Grafakos, L., Oh, T.: The Kato-Ponce inequality. Commun. PDE 39, 1128–1157 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  101. 516.
    Grafakos, L., Tao, T., Terwilleger, E.: L p bounds for a maximal dyadic sum operator. Math. Z. 246(12), 321–337 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  102. 521.
    Grisvard, P.: Commutativité de deux foncteurs d’interpolation et applications. J. Math. Pures. Appl. 45, 143–290 (1966)MathSciNetzbMATHGoogle Scholar
  103. 522.
    Gröchenig, K.: Unconditional bases in translation and dilation invariant function spaces on \(\mathbb {R}^n\). In: Constructive Theory of Functions, Varna, 1987, pp. 174–183. Publ. House Bulgar. Acad. Sci., Sofia (1988)Google Scholar
  104. 524.
    Gubinelli, M., Imkeller, P., Perkowski, N.: A Fourier approach to pathwise stochastic integration. Electron. J. Probab. 21(2016), paper no. 2, 1–37 (2016)Google Scholar
  105. 529.
    Hakim, D.I., Nakamura, S. Sawano, Y.: Interpolation of generalized Morrey spaces. Constr. Approx. 46(3), 489–563 (2017)CrossRefMathSciNetzbMATHGoogle Scholar
  106. 539.
    Han, Y.S., Paluszyński, M., Weiss, G.: A new atomic decomposition for the Triebel–Lizorkin spaces. Contemp. Math. 189, 235–249 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  107. 548.
    Han, J., Wang, B.: α-modulation spaces (I) scaling, embedding and algebraic properties. J. Math. Soc. Japan 66(4), 1315–1373 (2014)Google Scholar
  108. 590.
    Hirschman, I.: A convexity theorem for certain groups of transformations. J. Analyse Math. 2, 209–218 (1953)CrossRefMathSciNetzbMATHGoogle Scholar
  109. 595.
    Ho, K.P.: Remarks on Littlewood–Paley analysis. Canad. J. Math. 60(6), 1283–1305 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  110. 610.
    Hunt, R.A.: On the convergence of Fourier series, in 1967. In: Orthogonal Expansions and Their Continuous Analogues, pp. 235–255. (Proceedings of Conference, Edwardsville). Southern Illinois University Press, Carbondale (1968)Google Scholar
  111. 625.
    Jaffard, S., Okada, M., Ueno, T.: Approximate sampling theorem and the order of smoothness of the Besov space. In: Harmonic Analysis and Nonlinear Partial Differential Equations. RIMS Kôkyûroku Bessatsu, vol. B18, pp. 45–56. Research Institute for Mathematical Sciences (RIMS), Kyoto (2010)Google Scholar
  112. 628.
    Jawerth, B.: Some observations on Besov and Lizorkin-Triebel spaces. Math. Scand. 40, 94–104 (1977)CrossRefMathSciNetzbMATHGoogle Scholar
  113. 629.
    Jawerth, B.: The trace of Sobolev and Besov spaces if 0 < p < 1. Studia Math. 62(1), 65–71 (1978)MathSciNetzbMATHGoogle Scholar
  114. 630.
    Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math 30, 175–193 (1906)CrossRefMathSciNetzbMATHGoogle Scholar
  115. 640.
    Johnsen, J.: Pointwise multiplication of Besov and Triebel–Lizorkin spaces. Math. Nachr. 175, 85–133 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  116. 656.
    Kalyabin, G.A.: The description of functions of classes of Besov-Lizorkin-Triebel type (Russian). Trudy Mat. Inst. Steklov 156, 82–109 (1980)MathSciNetzbMATHGoogle Scholar
  117. 657.
    Kalyabin, G.A.: Criteria of the multiplication property and the embeddings in C of spaces of Besov-Lizorkin-Triebel type. Mat. Zametki 30, 517–526 (1981)MathSciNetGoogle Scholar
  118. 663.
    Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  119. 680.
    Koezuka, K., Tomita, N.: Bilinear pseudo-differential operators with symbols in \(BS^m_{1,1}\) on Triebel–Lizorkin spaces. J. Fourier Anal. Appl. 24, 309–319 (2018)Google Scholar
  120. 683.
    Koch, H., Sickel, W.: Pointwise multipliers of Besov spaces of smoothness zero and spaces of continuous functions. Rev. Mat. Iberoam. 18, 587–626 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  121. 688.
    Krbec, M., Schmeisser, H.J.: Refined limiting imbeddings for Sobolev spaces of vector-valued functions. J. Funct. Anal. 227(2), 372–388 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  122. 693.
    Kyriazis, G., Petrushev, P.: New bases for Triebel–Lizorkin and Besov spaces. Trans. Am. Math. Soc. 354(2), 749–776 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  123. 694.
    Kyriazis, G., Petrushev, P.: On the construction of frames for Triebel–Lizorkin and Besov spaces. Proc. Am. Math. Soc. 134(6), 1759–177 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  124. 697.
    Kyriazis, G.: Decomposition systems for function spaces. Studia Math. 157, 133–169 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  125. 701.
    Lacey, M.: Carleson’s theorem: proof, complements, variations. Publ. Mat. 48, 251–307 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  126. 702.
    Lacey M., Thiele, C.: A proof of boundedness of the Carleson operator. Math. Res. Lett. 7, 361–370 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  127. 717.
    Marschall, J.: Some remarks on Triebel spaces. Studia Math. 87, 79–92 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  128. 736.
    Lions, J.L., Peetre, J.: Sur une classe d’epaces d’interpolation. Inst. Hautes Études Sci. Publ. Math. 19, 5–68 (1964)CrossRefzbMATHGoogle Scholar
  129. 744.
    Lizorkin, P.I.: Boundary properties of functions in weighted classes (Russian). Dokl. Akad. Nauk SSSR 132, 514–517 (1960); English transl. in Soviet Math. Dokl. 1 (1960)Google Scholar
  130. 774.
    Meyer, Y.: Remarques sur un téorèm de J.-M. Bony. In: Proceedings of the Seminar on Harmonic Analysis, Pisa, 1980. Rend. Circ. Mat. Palermo (2) suppl. 1, 1–20 (1981)Google Scholar
  131. 775.
    Meyer, Y.: La Minimalité de l’Espace de Besov \(B^{0,1}_1\) et la Continuité des Opérateurs Definis par des Integrales Singulières. Monografias de Matematicas, vol. 4. Universidad Autónoma de Madrid (1986)Google Scholar
  132. 782.
    Mironescu, P., Russ, E.: Traces of weighted Sobolev spaces. Old and new. Nonlinear Anal. 119, 354–381 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  133. 790.
    Miyachi, A., Nicola, F., Rivetti, S., Tabacco, A., Tomita, N.: Estimates for unimodular Fourier multipliers on modulation spaces. Proc. Am. Math. Soc. 137(11), 3869–3883 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  134. 801.
    Mizuta, Y., Nakai, E., Sawano, Y., Shimomura, T.: Littlewood–Paley theory for variable exponent Lebesgue spaces and Gagliardo-Nirenberg inequality for Riesz potentials. J. Math. Soc. Japan 65(2), 633–670 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  135. 802.
    Moritoh, S.: Wavelet transforms in Euclidean spaces – their relation with wave frontsets and Besov, Triebel–Lizorkin spaces. Tohoku Math. J. 47, 555–565 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  136. 805.
    Morii, K., Sato, T., Sawano, Y.: Certain equalities concerning derivatives of radial homogeneous functions and a logarithmic function. Commun. Math. Anal. 9(2), 51–66 (2010)MathSciNetzbMATHGoogle Scholar
  137. 808.
    Morii, K., Sato, T., Wadade, H.: Brézis-Gallouet-Wainger inequality with a double logarithmic term on a bounded domain and its sharp constants. Math. Inequal. Appl. 14(2), 295–312 (2011)MathSciNetzbMATHGoogle Scholar
  138. 810.
    Moussai, M.: Realizations of homogeneous Besov and Triebel–Lizorkin spaces and an application to pointwise multipliers. Anal. Appl. (Singap.) 13(2), 149–183 (2015)Google Scholar
  139. 819.
    Nagayasu, S., Wadade, H.: Characterization of the critical Sobolev space on the optimal singularity at the origin. J. Funct. Anal. 258, 3725–3757 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  140. 820.
    Naibo, V.: On the bilinear Hormander classes in the scales of Triebel–Lizorkin and Besov spaces. J. Fourier Anal. Appl. 21(5), 1077–1104 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  141. 825.
    Nakai, E., Yabuta, K.: Pointwise multipliers for functions of bounded mean oscillation. J. Math. Soc. Japan 37, 207–218 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  142. 838.
    Netrusov, Y.V.: Sets of singularities of functions in spaces of Besov and Lizorkin-Triebel type (Russian). Translated in Proc. Steklov Inst. Math. 3, 185–203 (1990). Studies in the theory of differentiable functions of several variables and its applications, vol. 13. Trudy Mat. Inst. Steklov. 187, 162–177 (1989)Google Scholar
  143. 839.
    Netrusov, Y.V.: Theorems on traces and multipliers for functions in Lizorkin-Triebel spaces (Russian). Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 200, Kraev. Zadachi Mat. Fiz. Smezh. Voprosy Teor. Funktsii. 24, 132–138, 189–190 (1992); Translation in J. Math. Sci. 77(3), 3221–3224 (1995)Google Scholar
  144. 844.
    Nguyen, V.K., Sickel, W.: On a problem of Jaak Peetre concerning pointwise multipliers of Besov spaces. Studia Math. 243(2), 207–231 (2018)CrossRefMathSciNetzbMATHGoogle Scholar
  145. 849.
    Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa (3) 13, 115–162 (1959)Google Scholar
  146. 860.
    Oswald, P.: On the boundedness of the mapping f→|f| in Besov spaces. Comment. Univ. Carolinae 33, 57–66 (1992)MathSciNetzbMATHGoogle Scholar
  147. 861.
    Päivärinta, L.: On the spaces \(L^A_p(l_q)\): maximal inequalities and complex interpolation. Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 25, Helsinki (1980)Google Scholar
  148. 876.
    Peetre, J.: The trace of Besov space–a limiting case. Technical report, Lund (1975)Google Scholar
  149. 882.
    Prömel, D.J., Trabs, M.: Rough differential equations driven by signals in Besov spaces. J. Diff. Equations, 260(6), 5202–5249 (2016)CrossRefMathSciNetzbMATHGoogle Scholar
  150. 889.
    Riesz, F.: Sur les valeurs moyennes des fonctions. J. Lond. Math. Soc. 5, 120–121 (1930)CrossRefMathSciNetzbMATHGoogle Scholar
  151. 890.
    Riesz, M.: Sur les maxima des formes bilinéaires et sur les fonctionelles linéaires. Acta Math. 49, 465–497 (1926)CrossRefzbMATHGoogle Scholar
  152. 898.
    Runst, T.: Mapping properties of non-linear operators in spaces of Triebel–Lizorkin and Besov type. Anal. Math. 12, 313–346 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  153. 917.
    Sawano, Y.: Maximal operator for pseudodifferential operators with homogeneous symbols. Michigan Math. J. 59(1), 119–142 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  154. 918.
    Sawano, Y.: Brézis-Gallouët-Wainger type inequality for Besov–Morrey spaces. Studia Math. 196(1), 91–101 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  155. 919.
    Sawano, Y.: Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces on domains. Math. Nachr. 283(10), 1456–1487 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  156. 930.
    Scharf, B., Schmeisser, H.J., Sickel, W.: Traces of vector-valued Sobolev spaces. Math. Nachr. 285(8–9), 1082–1106 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  157. 931.
    Schneider, C.: Trace operators in Besov and Triebel–Lizorkin spaces. Z. Anal. Anwend. 29(3), 275–302 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  158. 953.
    Sickel, W.: On boundedness of superposition operators in spaces of Triebel–Lizorkin-type. Czechoslovak Math. J. 39(2(114)), 323–347 (1989)Google Scholar
  159. 954.
    Sickel, W.: Spline representations of functions in Besov-Triebel–Lizorkin spaces on \({\mathbb R}^n\). Forum Math. 2(5), 451–475 (1990)Google Scholar
  160. 955.
    Sickel, W.: A remark on orthonormal bases of compactly supported wavelets in Triebel–Lizorkin spaces. The case 0 < p, q < . Arch. Math. (Basel) 57(3), 281–289 (1991)Google Scholar
  161. 957.
    Sickel, W.: Characterization of Besov-Triebel–Lizorkin spaces via approximation by Whittaker’s cardinal series and related unconditional Schauder bases. Constr. Approx. 8(3), 257–274 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  162. 958.
    Sickel, W.: Pointwise multiplication in Triebel–Lizorkin spaces. Forum Math. 5(1), 73–91 (1993)MathSciNetzbMATHGoogle Scholar
  163. 959.
    Sickel, W.: Necessary conditions on composition operators acting on Sobolev spaces of fractional order. The critical case 1 < s < np. Forum Math. 9(3), 267–302 (1997)Google Scholar
  164. 960.
    Sickel, W.: Conditions on composition operators which map a space of Triebel–Lizorkin-type into a Sobolev space. The case 1 < s < np. II. Forum Math. 10(2), 199–231 (1998)Google Scholar
  165. 961.
    Sickel, W.: Necessary conditions on composition operators acting between Besov spaces. The case 1 < s < np. III. Forum Math. 10(3), 303–327 (1998)Google Scholar
  166. 962.
    Sickel, W.: On pointwise multipliers for \(F^s_{p,q}({\mathbb R}^n)\) in case σ p,q < s < np. Ann. Mat. Pura Appl. 176, 209–250 (1999)Google Scholar
  167. 963.
    Sickel, W.: Pointwise multipliers for Lizorkin-Triebel spaces. Oper. Theory Adv. Appl. 110, 295–321 (1999)MathSciNetzbMATHGoogle Scholar
  168. 970.
    Sickel, W., Triebel, H.: Hölder inequalities and sharp embeddings in function spaces of \(B^s_{p q}\) and \(F^s_{p q}\) type. Z. Anal. Anwend. 14(1), 105–140 (1995)Google Scholar
  169. 996.
    Skrzypczak, L., Tomasz, B.: Remark on borderline traces of Besov and Triebel–Lizorkin spaces on noncompact hypersurfaces. Comment. Math. 53(2), 293–309 (2013)MathSciNetzbMATHGoogle Scholar
  170. 1006.
    Stafney, J.D.: Analytic interpolation of certain multiplier spaces. Pac. J. Math. 32, 241–248 (1970)CrossRefMathSciNetzbMATHGoogle Scholar
  171. 1012.
    Strichartz, R.S.: Multipliers on fractional Sobolev spaces. J. Math. Mech. 16, 1031–1060 (1967)MathSciNetzbMATHGoogle Scholar
  172. 1013.
    Strichartz, R.S.: Fubini-type theorems. Annali Scuola Norm. Sup. Pisa 22, 399–408 (1968)MathSciNetzbMATHGoogle Scholar
  173. 1023.
    Sugimoto, M., Tomita, N., Wang, B.: Remarks on nonlinear operations on modulation spaces. Integral Transf Spec. Funct. 22(4–5), 351–358 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  174. 1026.
    Taibleson, M.H.: On the theory of Lipschitz spaces of distributions on Euclidean n-space. I. Principal properties. J. Math. Mech. 13, 407–479 (1964)MathSciNetzbMATHGoogle Scholar
  175. 1032.
    Thorin, G.O.: An extension of a convexity theorem due to M. Riesz, Kungl. Fysiografiska Sällskapets i Lund Förhandlingar 8(14), 166–170 (1938); Medd. Lunds Univ. Mat. Sem. 4, 1–5 (1939)Google Scholar
  176. 1039.
    Triebel, H.: Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation. Ark. Mat. 11, 13–64 (1973)Google Scholar
  177. 1041.
    Triebel, H.: Interpolation theory for function spaces of Besov type defined in domains. I. Math. Nachr. 57, 51–85 (1973)CrossRefMathSciNetzbMATHGoogle Scholar
  178. 1042.
    Triebel, H.: Interpolation theory for function spaces of Besov type defined in domains. II. Math. Nachr. 58, 63–86 (1973)CrossRefMathSciNetzbMATHGoogle Scholar
  179. 1043.
    Triebel, H.: Spaces of Kudrjavcev type I. J. Math. Anal. Appl. 56, 253–277 (1976)CrossRefMathSciNetzbMATHGoogle Scholar
  180. 1044.
    Triebel, H.: Spaces of Kudrjavcev type II. J. Math. Anal. Appl. 56, 278–287 (1976)CrossRefMathSciNetzbMATHGoogle Scholar
  181. 1049.
    Triebel, H.: Multiplication properties of the spaces \(B^s_{p,q}\) and \(F^s_{p,q}\). Quasi-Banach Algebras of functions. Ann. Mat. Pura Appl. (4) 113, 33–42 (1977)Google Scholar
  182. 1050.
    Triebel, H.: On spaces of \(B_{\infty ,q}^s\) type and \({\mathbb C}^s\) type. Math. Nachr. 85, 75–90 (1978)Google Scholar
  183. 1052.
    Triebel, H.: On Haar basis in Besov spaces. Serdica 4(4), 330–343 (1978)MathSciNetzbMATHGoogle Scholar
  184. 1054.
    Triebel, H.: Theorems of Littlewood–Paley type for BMO and for anisotropic Hardy spaces. In: Constructive Function Theory, vol. 77, pp. 525–532. Publishing House of the Bulgarian Academy of Sciences, Sofia (1980)Google Scholar
  185. 1055.
    Triebel, H.: On L p(l q)-spaces of entire analytic functions of exponential type: complex interpolation and Fourier multipliers. The case 0 < p < , 0 < q < . J. Approx. Theory 28(4), 317–328 (1980)Google Scholar
  186. 1057.
    Triebel, H.: Complex interpolation and Fourier multipliers for the spaces \(B^{s}_{p,q}\) and \(F^{s}_{p,q}\) of Besov-Hardy-Sobolev type: the case 0 < p ≤, 0 < q ≤. Math. Z. 176(4), 495–510 (1981)Google Scholar
  187. 1059.
    Triebel, H.: Anisotropic function spaces. I: Hardy’s inequality, decompositions. Anal. Math. 10, 53–77 (1984)Google Scholar
  188. 1064.
    Triebel, H.: Diffeomorphism properties and pointwise multipliers for function spaces. In: Function Spaces. Proceedings of Conference, Poznań, 1986. Teubner-Texte Mathematics, vol. 103, pp. 75–84. Teubner, Leipzig (1988)Google Scholar
  189. 1065.
    Triebel, H.: Atomic representations of \(F^s_{p q}\) spaces and Fourier integral operators. In: Seminar Analysis Karl–Weierstrass Institute 1986/87. Teubner-Texte Math., vol. 106, pp. 297–305. Teubner, Leipzig (1988)Google Scholar
  190. 1068.
    Triebel, H.: Atomic decompositions of \(F^s_{p q}\) spaces. Applications to exotic pseudodifferential and Fourier integral operators. Math. Nachr. 144, 189–222 (1989)Google Scholar
  191. 1070.
    Triebel, H.: A localization property for \(B^s_{p q}\) and \(F^s_{p q}\) spaces. Studia Math. 109(2), 183–195 (1994)Google Scholar
  192. 1071.
    Triebel, H.: Decompositions of function spaces. Progress Nonlinear Diff. Equ. Appl. 35, 691–730 (1999)MathSciNetzbMATHGoogle Scholar
  193. 1072.
    Triebel, H.: Truncations of functions. Forum Math. 12(6), 731–756 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  194. 1073.
    Triebel, H.: Regularity theory for some semi-linear equations: the Q-method. Forum Math. 13(1), 1–19 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  195. 1074.
    Triebel, H.: Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers. Rev. Mat. Complut. 15(2), 475–524 (2002)MathSciNetzbMATHGoogle Scholar
  196. 1079.
    Triebel, H.: Wavelet bases in Lorentz and Zygmund spaces. Georgian Math. J. 15(2), 389–402 (2008)MathSciNetzbMATHGoogle Scholar
  197. 1085.
    Triebel, H.: Characterizations of some function spaces in terms of Haar wavelets. Comment. Math. 53(2), 135–153 (2013)MathSciNetzbMATHGoogle Scholar
  198. 1088.
    Tsutsui, Y.: Sharp maximal inequalities and its application to some bilinear estimates. J. Fourier Anal. Appl. 17(2), 265–289 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  199. 1090.
    Tyulenev, A.I.: Traces of weighted Sobolev spaces with Muckenhoupt weight. The case p = 1. Nonlinear Anal. 128, 248–272 (2015)Google Scholar
  200. 1094.
    Uspenskii, S.V.: An embedding theorem for the fractional order classes of S.L. Sobolev. Dokl. Akad. Nauk SSSR 130, 992–993 (1960) (Russian); English transl. in Soviet Math. Dokl. 1 (1960)Google Scholar
  201. 1095.
    Uspenskii, S.V.: Properties of the classes \(W^{(r)}_p\) with fractional derivatives on differentiable manifolds (Russian). Dokl. Akad. Nauk SSSR 132, 60–62 (1960); English transl. in Soviet Math. Dokl. 1 (1960)Google Scholar
  202. 1098.
    Vignati, T.A.: Complex interpolation for families of quasi-Banach spaces. Indiana Univ. Math. J. 37, 1–21 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  203. 1106.
    Vybíral, J.: Sickel, W.: Traces of functions with a dominating mixed derivative in \({\mathbb R}^3\). Czechoslovak Math. J. 57(4(132)), 1239–1273 (2007)Google Scholar
  204. 1114.
    Wilson, M.: The intrinsic square function. Rev. Mat. Ibero. 23(3), 771–791 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  205. 1160.
    Yang, D., Yuan, W., Zhuo, C.: Complex interpolation on Besov-type and Triebel–Lizorkin-type spaces. Anal. Appl. (Singap.) 11(5), 1350021, 1–45 (2013)Google Scholar
  206. 1172.
    Young, L.C.: An inequality of Hölder type, connected with Stieltjes integration. Acta Math. 67(1), 251–282 (1936)CrossRefMathSciNetzbMATHGoogle Scholar
  207. 1178.
    Yuan, W., Sickel, W., Yang, D.: Interpolation of Morrey-Campanato and related smoothness spaces. Sci. China Math. 58(9), 1835–1908 (2015)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yoshihiro Sawano
    • 1
  1. 1.Department of Mathematics and Information ScienceTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations