Advertisement

Elementary Facts on Harmonic Analysis

  • Yoshihiro Sawano
Chapter
Part of the Developments in Mathematics book series (DEVM, volume 56)

Abstract

Now we elaborate a fundamental theory of harmonic analysis. We aim here to collect fundamental facts on analysis and the tools which we use throughout this book.

References

  1. 4.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics, V, vol 140, 2nd edn. Elsevier/Academic Press, New York (2003)Google Scholar
  2. 8.
    Besov, O.V., Il’in, V.P., Nikolski’i, S.M.: Integral Representations of Functions and Imbedding Theorems, vol. I+II. V. H. Winston and Sons, Washington, DC (1978, 1979). Transalated from the Russian. Scripta Series in Mathematics, Edited by Mitchell H. Taibleson, Halsted Press [John Wiley and Sons], New York/Toronto/London (1978). viii+345ppGoogle Scholar
  3. 14.
    Cannone, M.: Ondelettes, Paraproduits et Navier–Stokes, Diderot Editeur. Arts et Sciences, Paris/New York/Amsterdam (1995)Google Scholar
  4. 19.
    DeVore, R., Lorentz, G.G.: Constructive Approximation. Grundlehren der Mathematischen Wissenschaften, vol. 303. Springer, Berlin (1993)Google Scholar
  5. 22.
    Duoandikoetxea, J.: Fourier Analysis. Translated and revised from the 1995 Spanish original by D. Cruz-Uribe. Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence (2001)Google Scholar
  6. 25.
    Evans, C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence (1998)Google Scholar
  7. 30.
    Garling, D.J.H.: Inequalities: A Journey into Linear Analysis. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  8. 31.
    García-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, vol. 116. North-Holland, Amsterdam/New York (1985)Google Scholar
  9. 32.
    Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249. Springer, New York (2008)Google Scholar
  10. 33.
    Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250. Springer, New York (2009)Google Scholar
  11. 35.
    Gröchenig, K.: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2001)Google Scholar
  12. 40.
    Hernández, E., Weiss, G.: A First Course on Wavelets. CRC Press, Boca Raton (1996)CrossRefGoogle Scholar
  13. 44.
    Lebesgue, H.: Lecons sur l’Integration et la Recherche des Fonctions Primitives. Gauthier-Villars, Paris. Available online at http://www.archive.org/details/LeconsSurLintegration (1904)
  14. 45.
    Kato, T.: Ryoshirikigakuno Suugaku Riron edited by Kuroda, S. (in Japanese). Kindai KagakushaGoogle Scholar
  15. 46.
    Katznelson, Y.: An Introduction to Harmonic Analysis. Cambridge University Press, Cambridge/New York (2004)CrossRefGoogle Scholar
  16. 60.
    Megginson, R.: An Introduction to Banach Space Theory. Graduate Texts in Mathematics, vol. 183. Springer, New York (1998)Google Scholar
  17. 69.
    Nikolski’i, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems, 2nd edn. (Russian) Nauka, Moskva (1977). (English translation of the first edition: Springer, Berlin/Heidelberg/New York, 1975)Google Scholar
  18. 71.
    Peetre, J.: New Thoughts on Besov Spaces. Duke University Mathematics Series, vol. I. Mathematics Department, Duke University, Durham (1976)Google Scholar
  19. 81.
    Schwartz, L.: Théoriè des Distributions. Hermann, Paris (1950)zbMATHGoogle Scholar
  20. 82.
    Schwartz, L.: Théoriè des Distributions. Hermann, Paris (1951)zbMATHGoogle Scholar
  21. 85.
    Stein, E.M.: Singular Integral and Differential Property of Functions. Princeton University Press, Princeton (1970)Google Scholar
  22. 86.
    Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)zbMATHGoogle Scholar
  23. 87.
    Stein, E.M., Shakarchi, R.: Fourier Analysis. An Introduction. Princeton Lectures in Analysis, vol. 1. Princeton University Press, Princeton (2003)Google Scholar
  24. 88.
    Stein, E.M., Shakarchi, R.: Real Analysis, Measure Theory, Integration, and Hilbert Spaces. Princeton Lectures in Analysis, vol. 3. Princeton University Press, Princeton (2005)Google Scholar
  25. 89.
    Stein, E.M., Shakarchi, R.: Functional Analysis. Introduction to Further Topics in Analysis. Princeton Lectures in Analysis, vol. 4. Princeton University Press, Princeton (2011)Google Scholar
  26. 90.
    Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, vol. 32. Princeton University Press, Princeton (1971)Google Scholar
  27. 91.
    Strichartz, R.: A Guide to Distribution Theory and Fourier Transforms. Studies in Advanced Mathematics, x+213pp. CRC Press, Boca Raton (1994)Google Scholar
  28. 92.
    Tanabe, H.: Functional Analytic Methods for Partial Differential Equations (English Summary). Monographs and Textbooks in Pure and Applied Mathematics, vol. 204, pp. x+414. Marcel Dekker, New York (1997)Google Scholar
  29. 96.
    Triebel, H.: Fourier Analysis and Function Spaces. Teubner-Texte Math., vol. 7. Teubner, Leipzig (1977)Google Scholar
  30. 99.
    Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)Google Scholar
  31. 100.
    Triebel, H.: Theory of Function Spaces II. Birkhäuser, Basel (1992)Google Scholar
  32. 111.
    Sagher, Y., Zhou, K.C.: A local version of a theorem of Khinchin. In: Analysis and Partial Differential Equations. Lecture Notes in Pure and Applied Mathematics, vol. 122, pp. 327–330. Dekker, New York (1990)Google Scholar
  33. 112.
    Simon, B.: A Comprehensive Course in Analysis, Part 3, xviii+759pp. American Mathematical Society, Providence (2015)Google Scholar
  34. 114.
    Uchiyama, A.: Hardy Spaces on the Euclidean Space, With a foreword by Nobuhiko Fujii, Akihiko Miyachi and Kozo Yabuta and a personal recollection of Uchiyama by Peter W. Jones. Springer Monographs in Mathematics. Springer, Tokyo (2001)Google Scholar
  35. 117.
    Wojtaszczyk, P.: A Mathematical Introduction to Wavelets. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  36. 119.
    Yoshida, K.: Functional Analysis. Springer, Berlin (1995)CrossRefGoogle Scholar
  37. 121.
    Zygmund, A.: Trigonometric Series. Cambridge University Press, Cambridge (1959)zbMATHGoogle Scholar
  38. 137.
    Aoki, T.: Locally bounded linear topological spaces. Proc. Imp. Acad. Tokyo 18, 588–594 (1942)MathSciNetCrossRefGoogle Scholar
  39. 146.
    Auscher, P.: On necessary and sufficient conditions for L p-estimates of Riesz transforms associated to elliptic operators on \({\mathbb R}^n\) and related estimates. Mem. Am. Math. Soc. 186(871), xviii+75 (2007)Google Scholar
  40. 156.
    Babenko, K.I.: On conjugate functions. Doklady Akad. Nauk SSSR (N.S.) 62, 157–160 (1948)Google Scholar
  41. 160.
    Banach, S.: Sur la convergence presque partout de fonctionnelles linéaires. Bull. Soc. Math. France 50(2), 27–32, 36–43 (1926)Google Scholar
  42. 179.
    Besov, O.V.: Continuation of functions from L pl and W pl (Russian). Trudy Mat. Inst. Steklov. 89, 5–17 (1967)MathSciNetGoogle Scholar
  43. 181.
    Besov, O.V.: Behavior of differentiable functions at infinity, and density of the functions with compact support (Russian). Trudy Mat. Inst. Steklov. 105, 3–14 (1969)MathSciNetGoogle Scholar
  44. 185.
    Besov, O.V.: The behavior of differentiable functions on a nonsmooth surface. (Russian), Studies in the theory of differentiable functions of several variables and its applications, IV. Trudy Mat. Inst. Steklov. 117, 3–10, 343 (1972)Google Scholar
  45. 186.
    Besov, O.V.: Estimates of moduli of smoothness of functions on domains, and imbedding theorems (Russian). Studies in the theory of differentiable functions of several variables and its applications, IV. Trudy Mat. Inst. Steklov. 117, 22–46, 343 (1972)Google Scholar
  46. 187.
    Besov, O.V.: On traces on a nonsmooth surface of classes on differentiable functions. Proc. Steklov Inst. Math. 117, 11–23 (1972)MathSciNetzbMATHGoogle Scholar
  47. 201.
    Besov, O.V.: Hörmander’s theorem on Fourier multipliers (Russian). Studies in the theory of differentiable functions of several variables and its applications 11 (Russian). Trudy Mat. Inst. Steklov. 173, 3–13, 270 (1986)Google Scholar
  48. 247.
    Besov, O.V., Lizorkin, V.P.: The L p-estimates of a certain class of non-isotropically singular integrals (Russian). Dokl. Akad. Nauk SSSR 169, 1250–1253 (1966)MathSciNetGoogle Scholar
  49. 248.
    Besov, O.V., Lizorkin, V.P.: Singular integral operators and sequences of convolutions in L p-spaces (Russian). Mat. Sb. (N.S.) 73(115), 65–88 (1967)Google Scholar
  50. 263.
    Bourdaud, G.: Localizations des espaces de Besov. Studia Math. 90, 153–163 (1988)MathSciNetCrossRefGoogle Scholar
  51. 267.
    Bourdaud, G., Cristoforis, M.L., Sickel, W.: Functional calculus on BMO and related spaces. J. Funct. Anal. 189(2), 515–538 (2002)MathSciNetCrossRefGoogle Scholar
  52. 282.
    Bownik, M., Ho, K.P.: Atomic and molecular decompositions of anisotropic Triebel–Lizorkin spaces. Trans. Am. Math. Soc. 358(4), 1469–1510 (2006)MathSciNetCrossRefGoogle Scholar
  53. 287.
    Brezis, H., Mironescu, P.: Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces. J. Evol. Equ. 1, 387–404 (2001)MathSciNetCrossRefGoogle Scholar
  54. 288.
    Butzer, P.L., Ferreia, P.J.S.G., Higgins, J.R., Saitoh, S., Schmeisser, G., Steins, R.L.: Interpolations and sampling: E.T. Whittaker, K. Ogura and their followers. J. Fourier Anal. Appl. 17, 320–354 (2011)Google Scholar
  55. 300.
    Burenkov, V.I.: Sobolev’s integral representation and Taylor’s formula (Russian). Studies in the theory of differentiable functions of several variables and its applications, V. Trudy Mat. Inst. Steklov. 131, 33–38, 244 (1974)Google Scholar
  56. 301.
    Burenkov, V.I.: The density of infinitely differentiable functions in Sobolev spaces for an arbitrary open set (Russian). Studies in the theory of differentiable functions of several variables and its applications, VI. Trudy Mat. Inst. Steklov. 131, 39–50, 244–245 (1974)Google Scholar
  57. 302.
    Burenkov, V.I.: On partition of unity. Proc. Steklov Inst. Math. 4, 25–31 (1981)zbMATHGoogle Scholar
  58. 310.
    Burenkov, V.I., Kudryavtsev, L.D., Neverov, I.V.: On an identity for differences of arbitrary order. Mat. Zametki 64(2), 302–307 (1998); Translation in Math. Notes 64 (1998); (1–2), 256–261 (1999)Google Scholar
  59. 314.
    Burenkov, V.I., Tuyakbaev, M.S.: Multipliers of the Fourier integral in weighted L p-spaces with an exponential weight (Russian). Dokl. Akad. Nauk SSSR 320(1), 11–14 (1991); Translation in Soviet Math. Dokl. 44(2), 365–369 (1992)Google Scholar
  60. 324.
    Calderón, A.P.: Intermediate spaces and interpolation. Studia Math. Seria specjalna 1, 31–34 (1963)MathSciNetzbMATHGoogle Scholar
  61. 325.
    Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Studia Math. 14(1), 113–190, 46–56 (1964)Google Scholar
  62. 326.
    Calderón, A.P.: Spaces between L 1 and L and the theorem of Marcinkiewicz. Studia Math. 26, 273–299 (1966)MathSciNetCrossRefGoogle Scholar
  63. 330.
    Calderón, A.P., Zygmund, A.: On the existence of certain singular integrals. Acta Math. 88, 85–139 (1952)MathSciNetCrossRefGoogle Scholar
  64. 331.
    Calderón, A.P., Zygmund, A.: A note on the interpolation of sublinear operations. Am. J. Math. 78, 282–288 (1956)MathSciNetCrossRefGoogle Scholar
  65. 332.
    Calderón, A.P., Zygmund, A.: On singular integrals. Am. J. Math. 78, 289–309 (1956)CrossRefGoogle Scholar
  66. 333.
    Calderón, A.P., Zygmund, A.: On higher gradients of harmonic functions. Studia Math. 24, 211–226 (1964)MathSciNetCrossRefGoogle Scholar
  67. 334.
    Calderón, A.P., Zygmund, A.: Singular integral operators and differential equations. Am. J. Math. 79, 901–921 (1957)MathSciNetCrossRefGoogle Scholar
  68. 347.
    Carleson, L.: An interpolation problem for bounded analytic functions. Am. J. Math. 80, 921–930 (1958)MathSciNetCrossRefGoogle Scholar
  69. 348.
    Carleson, L.: Interpolation by bounded analytic functions and the corona problem. Ann. Math. (2nd Ser.) 76(3), 547–559 (1962)Google Scholar
  70. 350.
    Cascante, C., Ortega, J.M., Verbitsky, I.E.: Nonlinear potentials and two weight trace inequalities for general dyadic and radial kernels. Indiana Univ. Math. J. 53(3), 845–882 (2004)MathSciNetCrossRefGoogle Scholar
  71. 363.
    Choquet, G.: Theory of capacities. Ann. Inst. Fourier Grenoble 5, 1953–1954, 131–295 (1955)MathSciNetzbMATHGoogle Scholar
  72. 367.
    Christ, M., Seeger, A.: Necessary conditions for vector-valued operator inequalities in harmonic analysis. Proc. London Math. Soc. 93, 447–473 (2006)MathSciNetCrossRefGoogle Scholar
  73. 401.
    Dafni, G., Xiao, J.: Some new tent spaces and duality theorems for fractional Carleson measures and \(Q_{\alpha }({\mathbb R}^n)\). J. Funct. Anal. 208, 377–422 (2004)Google Scholar
  74. 422.
    Diening, L., Hästö, P., Roudenko, S., Spaces of variable integrability and differentiability. J. Funct. Anal. 256, 1731–1768 (2009)MathSciNetCrossRefGoogle Scholar
  75. 426.
    Doetsch, G.: Über die obere Grenze des absoluten Betrages einer analytischen Funktion auf Geraden. Math. Z. 8, 237–240 (1920)MathSciNetCrossRefGoogle Scholar
  76. 459.
    Fefferman, C., Stein, E.: Some maximal inequalities. Am. J. Math. 93, 107–115 (1971)MathSciNetCrossRefGoogle Scholar
  77. 482.
    Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34(4), 777–799 (1985)MathSciNetCrossRefGoogle Scholar
  78. 510.
    Gol’dman, M.L.: A covering theorem for describing general spaces of Besov type. Trudy Mat. Inst. Steklov. 156, 51–87 (1980)zbMATHGoogle Scholar
  79. 514.
    Gordon, M., Loura, L.: Exponential generalized distributions, Math. J. Okayama Univ. 52, 159–177 (2010)MathSciNetzbMATHGoogle Scholar
  80. 517.
    Grafakos, L., Kalton, N.: Multilinear Calderón–Zygmund operators on Hardy spaces. Collect. Math. 52(2), 169–179 (2001)MathSciNetzbMATHGoogle Scholar
  81. 526.
    Gustavsson, J., Peetre, J.: Interpolation of Orlicz spaces. Studia Math. 60(1), 33–59 (1977)MathSciNetCrossRefGoogle Scholar
  82. 528.
    Hadamard, J.: Sur les fonctions entières. Bull. Soc. Math. France 24, 186–187 (1986)zbMATHGoogle Scholar
  83. 553.
    Hardy, G.H.: The mean value of the modulus of an analytic function. Proc. London Math. Soc. 14, 269–277 (1914)zbMATHGoogle Scholar
  84. 554.
    Hardy, G.H., Littlewood, J.: A maximal theorem with function-theoretic applications. Acta Math. 54(1), 81–116 (1930)MathSciNetCrossRefGoogle Scholar
  85. 580.
    Hedberg, L.I.: On certain convolution inequalities. Proc. Am. Math. Soc. 36(2), 505–510 (1972)MathSciNetCrossRefGoogle Scholar
  86. 584.
    Hedberg, L., Netrusov, Y.: An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation. Mem. Am. Math. Soc. 188(882), vi+97 (2007)Google Scholar
  87. 586.
    Helly, E.: Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jahresbericht der Deutschen Mathematiker-Vereinigung. 32, 175–176 (2013)zbMATHGoogle Scholar
  88. 606.
    Hörmander, L.: Estimates for translation invariant operators in L p spaces. Acta Math. 104, 93–140 (1960)MathSciNetCrossRefGoogle Scholar
  89. 630.
    Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math 30, 175–193 (1906)MathSciNetCrossRefGoogle Scholar
  90. 648.
    Johnsen, J., Sickel, W.: A direct proof of Sobolev embeddings for quasi-homogeneous Lizorkin-Triebel spaces with mixed norms. J. Funct. Spaces Appl. 5(2), 183–198 (2007)MathSciNetCrossRefGoogle Scholar
  91. 653.
    Kalton, N., Mitrea, M.: Stability results on interpolation scales of quasi-Banach spaces and applications. Trans. Am. Math. Soc. 350(10), 3903–3922 (1998)MathSciNetCrossRefGoogle Scholar
  92. 666.
    Kempka, H., Vybíral, J.: Spaces of variable smoothness and integrability: characterizations by local means and ball means of differences. J. Fourier Anal. Appl. 18(4), 852–891 (2012)MathSciNetCrossRefGoogle Scholar
  93. 678.
    Kolmogoroff, A.: Sur les fonctions harmoniques conjuguées et les séries de Fourier. Fund. Math. 7, 24–29 (1925)CrossRefGoogle Scholar
  94. 681.
    Kobayashi, M., Miyachi, A., Tomita, N.: Embedding relations between local Hardy and modulation spaces. Studia Math. 192(1), 79–96 (2009)MathSciNetCrossRefGoogle Scholar
  95. 690.
    Kree, P.: Sur les multiplicateurs dans \({\mathcal F}\,L\sp {p}\) (French). Ann. Inst. Fourier (Grenoble) 16, 31–89 (1966)Google Scholar
  96. 697.
    Kyriazis, G.: Decomposition systems for function spaces. Studia Math. 157, 133–169 (2003)MathSciNetCrossRefGoogle Scholar
  97. 704.
    Lebesgue, H.: Sur l’integration des fonctions discontinues. Ann. Sci. Ecole Norm. Sup. 27(3), 361–450 (1910)MathSciNetCrossRefGoogle Scholar
  98. 715.
    Machihara, S., Ozawa, T.: Interpolation inequalities in Besov spaces. Proc. Am. Math. Soc. 131(5), 1553–1556 (2003)MathSciNetCrossRefGoogle Scholar
  99. 732.
    Lions, J.L.: Symétrie et compacité dans les espaces de Sobolev (French). J. Funct. Anal. 49(3), 315–334 (1982)MathSciNetCrossRefGoogle Scholar
  100. 742.
    Littman, W.: Multipliers in L p and interpolation. Bull. Am. Math. Soc. 71, 764–766 (1965)MathSciNetCrossRefGoogle Scholar
  101. 750.
    Lorentz, G.: Some new functional spaces. Ann. Math. (2) 51, 37–55 (1950)Google Scholar
  102. 751.
    Lorentz, G.: On the theory of spaces Λ. Pac. J. Math. 1, 411–429 (1951)Google Scholar
  103. 761.
    Maligranda, L.: Marcinkiewicz interpolation theorem and Marcinkiewicz spaces. Wlad. Math. 48(2), 157–171 (2012)MathSciNetzbMATHGoogle Scholar
  104. 763.
    Marcinkiewicz, J.: Sur l’interpolation d’operations. C. R. Acad. Sci. Paris 208, 1272–1273 (1939)zbMATHGoogle Scholar
  105. 772.
    Meyers, G.N.: Mean oscillation over cubes and Hölder continuity. Proc. Am. Math. Soc. 15, 717–721 (1964)zbMATHGoogle Scholar
  106. 778.
    Michlin, S.G.: Singular Integral Equations. American Mathematical Society Translation, vol. 24, pp. 1–116. American Mathematical Society, New York (1950)Google Scholar
  107. 779.
    Michlin, S.G.: On multipliers of Fourier integrals (Russian). Dokl. Akad. Nauk. SSSR 109, 701–703 (1956)MathSciNetzbMATHGoogle Scholar
  108. 780.
    Michlin, S.G.: Fourier integrals and multiple singular integrals (Russian). Vestnik Leningrad, Univ. Mat. Meh. Astronom. 7, 143–155 (1957)Google Scholar
  109. 781.
    Mitrea M., Taylor, M.: Sobolev and Besov space estimates for solutions to second order PDE on Lipschitz domains in manifolds with Dini or Hölder continuous metric tensors. Commun. PDE 30(1–3), 1–37 (2005)CrossRefGoogle Scholar
  110. 791.
    Miyachi, A., Tomita, N.: Calderón-Vaillancourt-type theorem for bilinear operators. Indiana Univ. Math. J. 62(4), 1165–1201 (2013)MathSciNetCrossRefGoogle Scholar
  111. 805.
    Morii, K., Sato, T., Sawano, Y.: Certain equalities concerning derivatives of radial homogeneous functions and a logarithmic function. Commun. Math. Anal. 9(2), 51–66 (2010)MathSciNetzbMATHGoogle Scholar
  112. 826.
    Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262, 3665–3748 (2012)MathSciNetCrossRefGoogle Scholar
  113. 834.
    Neĉas, J.: Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle (French). Ann. Scuola Norm. Sup. Pisa (3) 16, 305–326 (1962)Google Scholar
  114. 845.
    Nikolski’i, S.M.: Inequalities for entire function of finite order and their application in the theory of differentiable functions of several variables (Russian). Trudy Mat. Inst. Steklov 38, 244–278 (1951)Google Scholar
  115. 853.
    Noi, T.: Sawano, Y.: Complex interpolation of Besov spaces and Triebel–Lizorkin spaces with variable exponents. J. Math. Anal. Appl. 387, 676–690 (2012)Google Scholar
  116. 855.
    Nursultanov, E.D., Ruzhansky, M., Tikhonov, S.Y.: Nikolskii inequality and functional classes on compact Lie groups. Funct. Anal. Appl. 49(3), 226–229 (2015). Translated from Funktsionalńyi Analiz i Ego Prilozheniya 49(3), 83–87 (2015)Google Scholar
  117. 856.
    Nualtaranee, S.: On least harmonic majorants in half-spaces. Proc. London Math. Soc. (3) 27, 243–260 (1973)Google Scholar
  118. 857.
    Ogura, K.: On a certain transcendental integral function in the theory of interpolation. Tohoku Math. J. 17, 64–72 (1920)zbMATHGoogle Scholar
  119. 868.
    Peetre, J.: Applications de la théorie des espaces d’interpolation dans l’analyse harmonique (French). Ricerche Mat. 15, 3–36 (1966)MathSciNetzbMATHGoogle Scholar
  120. 877.
    Pérez, C.: Sharp L p-weighted Sobolev inequalities. Ann. Inst. Fourier (Grenoble) 45, 809–824 (1995)MathSciNetCrossRefGoogle Scholar
  121. 880.
    Plancherel, M., Pólya, M.G.: Fonctions entières et intégrales de fourier multiples (French). Comment. Math. Helv. 10(1), 110–163 (1937)MathSciNetCrossRefGoogle Scholar
  122. 893.
    Rolewicz, S.: On a certain class of linear metric spaces. Bull. Acad. Polon. Sci. 5, 471–473 (1957)MathSciNetzbMATHGoogle Scholar
  123. 900.
    Rychkov, V.S.: On restrictions and extension of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains. J. London Math. Soc. (2) 60, 237–257 (1999)Google Scholar
  124. 902.
    Rychkov, V.S.: On a theorem of Bui, Paluszyński, and Tailbeson. Proc. Steklov Inst. Math. 227, 280–292 (1999)zbMATHGoogle Scholar
  125. 904.
    Rychkov, V.S.: Littlewood–Paley theory and function spaces with \(A_p^{\mathop {\mathrm {loc}}}\) weights. Math. Nachr. 224, 145–180 (2001)Google Scholar
  126. 913.
    Sawano, Y.: Sharp estimates of the modified Hardy–Littlewood maximal operator on the nonhomogeneous space via covering lemmas. Hokkaido Math. J. 34, 435–458 (2005)MathSciNetCrossRefGoogle Scholar
  127. 940.
    Schott, T.: Function spaces with exponential weights I. Math. Nachr. 189, 221–242 (1998)MathSciNetCrossRefGoogle Scholar
  128. 962.
    Sickel, W.: On pointwise multipliers for \(F^s_{p,q}({\mathbb R}^n)\) in case σ p,q < s < np. Ann. Mat. Pura Appl. 176, 209–250 (1999)Google Scholar
  129. 1001.
    Sobolev, S.L.: Méthode nouvelle à resoudre le problème de Cauchy pour les équations linéaires hyperboliques normales. Math. Sb. 1, 39–72 (1936)zbMATHGoogle Scholar
  130. 1008.
    Stein, E.M.: Note on singular integrals. Proc. Am. Math. Soc. 8, 250–254 (1957)MathSciNetCrossRefGoogle Scholar
  131. 1011.
    Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)MathSciNetCrossRefGoogle Scholar
  132. 1035.
    Tomita, N.: On the Hörmander multiplier theorem and modulation spaces. Appl. Comput. Harmon. Anal. 26(3), 408–415 (2009)MathSciNetCrossRefGoogle Scholar
  133. 1051.
    Triebel, H.: A note on quasi-normed convolution algebras of entire analytic functions of exponential type. J. Approx. Theory 22, 368–373 (1978)MathSciNetCrossRefGoogle Scholar
  134. 1069.
    Triebel, H.: Inequalities in the theory of function spaces: a tribute to Hardy, Littlewood and Polya. In: Inequalities. Proceedings of Conference Birmingham (UK). Lecture Notes Applications in Mathematics, vol. 119, pp. 231–248. Marcel Dekker, New York (1991)Google Scholar
  135. 1097.
    Vitali, G.: Sui gruppi di punti e sull funzioni di variabili reali. Torino Att 43, 229–246 (1908)zbMATHGoogle Scholar
  136. 1111.
    Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36(1), 63–89 (1934)MathSciNetCrossRefGoogle Scholar
  137. 1112.
    Wiener, N.: The ergodic theorem. Duke Math. J. 5, 1–18 (1939)MathSciNetCrossRefGoogle Scholar
  138. 1151.
    Yang, D., Yuan, W.: A note on dyadic Hausdorff capacities. Bull. Sci. Math. 132(6), 500–509 (2008)MathSciNetCrossRefGoogle Scholar
  139. 1152.
    Yang, D., Yuan, W.: A new class of function spaces connecting Triebel–Lizorkin spaces and Q spaces. J. Funct. Anal. 255, 2760–2809 (2008)MathSciNetCrossRefGoogle Scholar
  140. 1191.
    Zygmund, A.: On a theorem of Marcinkiewicz concerning interpolation of operators. J. Math. Pures Appl. (9) 35, 223–248 (1956)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yoshihiro Sawano
    • 1
  1. 1.Department of Mathematics and Information ScienceTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations