Advertisement

Optimization in Arc Welding Process

  • S. Arungalai VendanEmail author
  • Liang Gao
  • Akhil Garg
  • P. Kavitha
  • G. Dhivyasri
  • Rahul SG
Chapter

Abstract

Optimization is a valuable tool in making decisions and in analysing physical systems. In mathematical terms, optimization is the process of determining the best solution achievable close to desired value among the set of all feasible solutions.

References

  1. 1.
    H. Guan, Gradient-type method for unconstrained optimization (2016)Google Scholar
  2. 2.
    K.Y. Benyounis, A.G. Olabi, Optimization of different welding processes using statistical and numerical approaches—A reference guide. Adv. Eng. Softw. 39(6), 483–496 (2008)CrossRefGoogle Scholar
  3. 3.
    A.J. Maren, C.T. Harston, R.M. Pap, Handbook of Neural Computing Applications. Elsevier (1990)Google Scholar
  4. 4.
    S. Mandal, P.V. Sivaprasad, S. Venugopal, K.P.N. Murthy, Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion. Appl. Soft Comput. J. 9(1), 237–244 (2009)CrossRefGoogle Scholar
  5. 5.
    M. Vasudevan, Soft computing techniques in stainless steel welding. Mater. Manuf. Process. 24(2), 209–218 (2009)CrossRefGoogle Scholar
  6. 6.
    Y. Hu, The Parallelism and Application in Data Mining of BP Algorithm, Chongqing University (2003)Google Scholar
  7. 7.
    J. Cao, H. Cui, H. Shi, L. Jiao, Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce (2016)CrossRefGoogle Scholar
  8. 8.
    R.C. Eberhart, Y. Shi, Particle swarm optimization: developments, applications and resources, in Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), vol. 1, February 2001 (2015) pp. 81–86Google Scholar
  9. 9.
    H. Yu, B. Wilamowski, Levenberg–Marquardt Training (2011) pp. 1–16Google Scholar
  10. 10.
    D.S. Nagesh, G.L. Datta, Genetic algorithm for optimization of welding variables for height to width ratio and application of ANN for prediction of bead geometry for TIG welding process. Appl. Soft Comput. J. 10(3), 897–907 (2010)CrossRefGoogle Scholar
  11. 11.
    B. Senthilkumar, T. Kannan, R. Madesh, Optimization of flux-cored arc welding process parameters by using genetic algorithm. Int. J. Adv. Manuf. Technol. 35–41 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • S. Arungalai Vendan
    • 1
    Email author
  • Liang Gao
    • 2
  • Akhil Garg
    • 3
  • P. Kavitha
    • 4
  • G. Dhivyasri
    • 5
  • Rahul SG
    • 6
  1. 1.VIT UniversityVelloreIndia
  2. 2.State Key Lab of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhanChina
  3. 3.Intelligent Manufacturing Key Laboratory of Ministry of EducationShantou UniversityShantouChina
  4. 4.VIT UniversityVelloreIndia
  5. 5.School of Electrical EngineeringVIT UniversityVelloreIndia
  6. 6.School of Electrical EngineeringVIT UniversityVelloreIndia

Personalised recommendations