Control Terminologies and Schemes for Arc Welding Processes

  • S. Arungalai VendanEmail author
  • Liang Gao
  • Akhil Garg
  • P. Kavitha
  • G. Dhivyasri
  • Rahul SG


A control system interconnects various components of a system to provide a desired response. The control theory provides a foundation for analysing a system, which indicates cause–effect (input–output) relationship for various elements involved in a system.


  1. 1.
    D. Cuiuri, J. Norrish, Verstatile Welding Power Source Controller for Research and Product Development (2006)Google Scholar
  2. 2.
    I. Singh, Bhim Senior Member, B. N. Singh, I. Chandra, Ambrish Senior Member, I. Al-haddad, Kamal Senior Member, A. Pandey, I. Kothari, Dwarka P Senior Member, A review of three-phase improved Power quality AC–DC converters. IEEE Trans. Indus. Electron. 51(3), 641–660 (2004)Google Scholar
  3. 3.
    H.S. Cho, D.W. Chun, A microprocessor-based electrode movement controller for spot weld quality assurance, IEEE Trans. Indus. Electron. IE-32(3), 234–238 (1985)CrossRefGoogle Scholar
  4. 4.
    J. Dziubinski, J. Slania, As assessment of the welding properties which are characteristic of the power source used in robotic arc welding. Weld. Int. 9(8), 601–606 (1995)CrossRefGoogle Scholar
  5. 5.
    G. Dean, J. Norrish, C. Cook, Evaluation of control techniques for dip transfer gas metal arc welding. Australas. Weld. J. 50, 34–41 (2005)Google Scholar
  6. 6.
    P.K. Palani, N. Murugan, Selection of parameters of pulsed current gas metal arc welding. J. Mater. Process. Technol. 172(1), 1–10 (2006)CrossRefGoogle Scholar
  7. 7.
    Z. Guo-rong, L. Zhao, Z. Ai-yun, Y. Mi, D. Shan-xu, K. Yong, Sliding Mode Control and PI Control for Arc Welding/cutting Inverter (2008), pp. 4–7Google Scholar
  8. 8.
    X. Dl et al., The Fuzzy Control Algorithm in Copper-Coated Aluminium Wire TIG System Application (2011), pp. 2214–2218Google Scholar
  9. 9.
    R.H.G. Silva, J.C. Dutra, R. Gohr, Scientific and technological fundamentals for the development of the controlled short-circuiting MIG/MAG welding process: a review of the literature. Part 2 of 3. Metal droplet formation, shield gases, penetration mechanisms, heat input and economical asp. Weld. Int. 23(2), 141–149 (2009)CrossRefGoogle Scholar
  10. 10.
    S. Liu, Y. Wang, Research of CO2 welding inverter power source under current waveform control. IEEE International Conference on Automation and Logistics, August, pp. 116–121 (2012)Google Scholar
  11. 11.
    A.V. Shcherbakov, Switching processes in power sources for electron beam welding gas with formation of high-voltage breakdown. Weld. Int. 26(3), 221–226 (2012)Google Scholar
  12. 12.
    P. Tang, X. Jing, A Novel Fuzzy Control of Welder Power Source Using PWM Chip. 2013 Sixth International Symposium on Computing Intelligence and Design, pp. 224–227 (2013)Google Scholar
  13. 13.
    L. Gong, C.L. Liu, X.F. Zha, Model-based real-time dynamic power factor measurement in AC resistance spot welding with an embedded ANN. IEEE Trans. Ind. Electron. 54(3), 1442–1448 (2007)CrossRefGoogle Scholar
  14. 14.
    K. Zhou, L. Cai, A Nonlinear Current Control Method for Resistance Spot Welding. IEEE/ASME Trans. Mechatron. 19(2), 559–569 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    V.A. Lebedev, M.S. Sorokin, A.A. Belov, Algorithms for controlling inverter sources of welding current to optimize the electrode metal transfer parameters. Weld. Int. 28(12), 957–961 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Buso, T. Caldognetto, A nonlinear wide-bandwidth digital current controller for DC–DC and DC–AC converters. IEEE Trans. Ind. Electron. 62(12), 7687–7695 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Liu, X. Miao, C. Zhang, The Model Reference Adaptive Control Method of Submerged Arc Welding Power Supply System (2016), pp. 3646–3649Google Scholar
  18. 18.
    S. Narula, B. Singh, G. Bhuvaneswari, Power factor corrected welding power supply using modified zeta converter. IEEE J. Emerg. Sel. Top. Power Electron. 4(2), 617–625 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Schupp, W. Fischer, H. Mecke, Control with power electronics (475), 18–19 (2000)Google Scholar
  20. 20.
    Y.M. Chae, Y. Jang, M.M. Jovanovic, A Novel Mixed Current and Voltage Control Scheme for Inverter Arc Welding Machines. APEC 2001. Sixth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.01CH37181), vol. 0, no. C, pp. 308–313 (2001)Google Scholar
  21. 21.
    D. Cuiuri, J. Norrish, C. Cook, New approaches to controlling unstable Gas Metal Arc Welding. Australas. Weld. J. vol. 47, no. 3 (2002)Google Scholar
  22. 22.
    P. Qingle, Design of fuzzy control and expert system based MIG arc welding invert power source. ICEMI 2009—Proceedings of the 9th International Conference on Electron. Measurements and Instruments (2009), pp. 489–492Google Scholar
  23. 23.
    L. Zhao, X. Bai-lu, W. Shu-hui, Z. Guo-rong, The Sliding Mode Control for Arc Welding Inverter Power Source. 2008 3rd IEEE (2008), pp. 1100–1104Google Scholar
  24. 24.
    Q. Pang, M. Zhang, Design of digital control system for pulsed MIG welding power source. Proc. World Congr. Intell. Control Autom. 20090461204, 2492–2495 (2010)Google Scholar
  25. 25.
    T. Ueyama, Welding power sources_TF. Weld. Int. 24(9), 699–705 (2010)CrossRefGoogle Scholar
  26. 26.
    I. The, Effect of welding parameters on bead. Flux 1 (1989)Google Scholar
  27. 27.
    I.S. Kim, J.S. Son, I.G. Kim, J.Y. Kim, O.S. Kim, A study on relationship between process variables and bead penetration for robotic CO2 arc welding. J. Mater. Process. Technol. 136(1–3), 139–145 (2003)CrossRefGoogle Scholar
  28. 28.
    L. Wei, Measurement of inherent deformations in typical weld joints using inverse analysis (part 2) prediction of welding distortion of large structures†. Trans. JWRI is (2005)Google Scholar
  29. 29.
    T. Uezono, T. Hongjun, Application to MIG welding using welding power source equipped with digital filtering process. Weld. Int. 22(5), 299–303 (2008)CrossRefGoogle Scholar
  30. 30.
    J.C. Dutra, MIG/MAG—Short circuit metal transfer—Welding power sources versus arc gases. Weld. Int. 23(4), 231–236 (2009)CrossRefGoogle Scholar
  31. 31.
    M. Suban, J. Tušek, Methods for the determination of arc stability (METAL TRANSFER). J. Mater. Process. Technol. 143–144(1), 430–437 (2003)CrossRefGoogle Scholar
  32. 32.
    B.P. Agrawal, P.K. Ghosh, Thermal modeling of multipass narrow gap pulse current GMA welding by single seam per layer deposition technique. Mater. Manuf. Process. 25(11), 1251–1268 (2010)CrossRefGoogle Scholar
  33. 33.
    K. Devakumaran, N. Rajasekaran, P.K. Ghosh, Process characteristics of inverter type GMAW power source under static and dynamic operating conditions. Mater. Manuf. Process. 27(12), 1450–1456 (2012)CrossRefGoogle Scholar
  34. 34.
    K. Skrzyniecki, P. Kolodziejczak, P. Cegielski, A. Kolasa, Experimental Studies on Stability of Power Source—Arc (2013), pp. 359–362Google Scholar
  35. 35.
    S. Yamane, S. Xiang, Y. Kaneko, K. Oshima, Effect of power source characteristic on CO 2 short circuiting arc welding_TF. Sci. Technol. Weld. Join. 10(3), 281–286 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • S. Arungalai Vendan
    • 1
    Email author
  • Liang Gao
    • 2
  • Akhil Garg
    • 3
  • P. Kavitha
    • 4
  • G. Dhivyasri
    • 5
  • Rahul SG
    • 6
  1. 1.VIT UniversityVelloreIndia
  2. 2.State Key Lab of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhanChina
  3. 3.Intelligent Manufacturing Key Laboratory of Ministry of EducationShantou UniversityShantouChina
  4. 4.VIT UniversityVelloreIndia
  5. 5.School of Electrical EngineeringVIT UniversityVelloreIndia
  6. 6.School of Electrical EngineeringVIT UniversityVelloreIndia

Personalised recommendations