Insight into Arc Welding Power Source Terminologies

  • S. Arungalai VendanEmail author
  • Liang Gao
  • Akhil Garg
  • P. Kavitha
  • G. Dhivyasri
  • Rahul SG


Welding arc is an electric current flowing between two electrodes through an ionized gas column. Arc stability is a critical problem which influences the metal transfer during welding. When the arc is stable, metal transfer is uniform with minimum spatter (Shklovski and Janson in Development of constant-power source for arc welding, pp. 255–258, 2012 [37]). The terminologies of major concerns during the joining process are presented below.


  1. 1.
    J. Shklovski, K. Janson, Development of constant-power source for arc welding, in 13th Biennial Baltic Electronics Conference, pp. 255–258 (2012)Google Scholar
  2. 2.
    H. Latifi, R. Suoranta, J. Martikainen, M. Pirinen, P. Kah, Usability of arc types in industrial welding. Int. J. Mat. Eng. 9(1), 1–12 (2014) Google Scholar
  3. 3.
    T.W. Eagar, The Physics of Arc Welding Processes (1990), pp. 17–19CrossRefGoogle Scholar
  4. 4.
    J.N. DuPont, A.R. Marder, Thermal efficiency of arc welding processes. Weld. Res. Suppl. 406–416(1995)Google Scholar
  5. 5.
    M. Schiedermayer, Improving reliability of inverter based welding machines. Weld. J. 76(2) (1997)Google Scholar
  6. 6.
    M. Suban, J. Tušek, Methods for determination of arc stability. J. Mat. Process. Technol. 143–144, 430–437 (2003)Google Scholar
  7. 7.
    A.F. Knyaz’kov, S.A. Knyaz’kov, K.I. Dementsev, An inverter power source for welding with modulated current. Weld. Int. 23(12), 957–962 (2009)CrossRefGoogle Scholar
  8. 8.
    V. Agelidis, O. Anaya-Lara, T. Miller, E. Acha, Power Electronic Control in Electrical Systems (Elsevier, India, 2002)Google Scholar
  9. 9.
    Arc Welding Power Sources:NPTEL online course (2017). Available:
  10. 10.
    T.E. GROUP, Basics of Arc Welding. Available: Accessed 2017
  11. 11.
    Pintu, Arc Welding Polarity—Types, Effects, Selection and Pros & Cons. Available: Accessed 2017
  12. 12.
    T.L.E. Company, Weld Penetration Variables: Lincon Electric (1999). Accessed 2017Google Scholar
  13. 13.
    W.S. Service, Maritime Welding Handbook (2010)Google Scholar
  14. 14.
    M. Electric, Guidelines to GTAW process (2003). Available: Accessed 2017
  15. 15.
    M.H. Rashid, Power Electronics Handbook (Elsevier) CrossRefGoogle Scholar
  16. 16.
    A.F. Manz, Inductance vs. Slope Control for Gas Metal Arc Power, vol. 9 (1969), pp. 707–7012Google Scholar
  17. 17.
    E.H. Dagget, A power supply for pulsed power welding. IEEE Spectr. 1, 67–70 (1968)CrossRefGoogle Scholar
  18. 18.
    J.D. Van Wyk, J.A. Ferreira, Transistor invertor design optimization in frequency range above 5KHz up to 50 KVA. IEEE Trans. Ind. Appl. 2, 296–302 (1983)Google Scholar
  19. 19.
    A. Kolasa. A. Matsunawa, Y. Arata, Experimental study on dynamic properties of power sources for MIG/MAG Welding. Trans. JWRI, 2, 255–265 (1985)Google Scholar
  20. 20.
    J.F. Lancaster, The physics of fusion welding Part-1: the electric arc welding. IEEE Proc.—Electric Power Appl. 134(5), 233–254 (1987)CrossRefGoogle Scholar
  21. 21.
    W. Lucas, M.G. Murch, Arc reignition characteristics when welding with sine-wave and square-wave power supplies. IEEE Proc.—Electr. Power Appl. 134(86), 348–354 (1987)CrossRefGoogle Scholar
  22. 22.
    T. Mita. A. Sakabe, T. Yokoo, Quantitative estimates of arc stability for CO2 gas shielded arc welding. Weld. Int. 2(2), 152–159 (1988)CrossRefGoogle Scholar
  23. 23.
    I.V. Pentegov, S.V. Rymar, V.P. Latanskij, Optimisation of welding parameters in power sources with condenser voltage multipliers. Weld. Int. 12(2), 89–91 (1988)CrossRefGoogle Scholar
  24. 24.
    M.J.M. Hermans, G. Den Ouden, Modelling of heat transfer in short circuiting gas metal arc welding. Sci. Technol. Weld. Joining 3(3), 135–138 (1998)CrossRefGoogle Scholar
  25. 25.
    M.J. Kang, S. Rhee, The statistical models for estimating the amount of spatter in the short circuit transfer mode of GMAW. Weld. J. (USA). 80(1) (2001)Google Scholar
  26. 26.
    Z. Jinhong, L. Wenlin, S. Yaowu, Study on the dynamic process of arc welding inverter. in Proceedings of the Power Electronics and Motion Control Conference, 2000. IPEMC 2000, vol. 1, pp. 308–322 (2000)Google Scholar
  27. 27.
    A.V. Agunov, M.V. Agunov, G.M. Korotkova, V.I. Stolbov, A.A. Shevtsov, Energy characteristics of the power source‐welding arc system. Weld. Int. 16(12), 966–969 (2002)CrossRefGoogle Scholar
  28. 28.
    Y.N. Konovalov, Comparison of the properties of the MAGMA-350 universal inverter power source for the welding arc with traditional rectifiers for mechanized welding. Weld. Int. 28(4), 317–319 (2014)CrossRefGoogle Scholar
  29. 29.
    J. Ji, X. Hu, Z. Hua, G. Zeng, L. Guo, Research of soft switching arc welding inverter power supply with high-frequency and high-power. Int. Power Electron. Appl. Conf. Exposition, 924 (2014)Google Scholar
  30. 30.
    V.A. Lebedev, V.S. Romanyuk, Single-phase welding current power sources for mechanised carbon dioxide welding. Weld. Int. 18(6), 489–493 (2004)CrossRefGoogle Scholar
  31. 31.
    G.R. Zhu, Z. Liu, X. Li, B.Y. Liu, S.X. Duan, Y. Kang, Research on digital soft-switch welding/cutting inverter power source, in IEEE International Conference on Power Electronics and Drive Systems, vol. 7 (2007), pp. 325–329Google Scholar
  32. 32.
    Z. Guo-rong, L. Zhao, Z. Ai-yun, Y. Mi, S.X. Duan, Y. Kang, Sliding mode control and PI control for arc welding/cutting inverter, in IEEE International Conference In Industrial Technology (2008), pp. 1–4Google Scholar
  33. 33.
    V.A. Lebedev, A.V. Motrii, A.D. Glushchenko, N.I. Postolatii, Experimental examination of welding current sources for semiautomatic welding equipment poared from 220 V single-phase mains. Weld. Int. 21(6), 454–457 (2007)CrossRefGoogle Scholar
  34. 34.
    B.J. Baliga, Power Mosfets—In Fundamentals of Power Semiconductor Devices (2008)CrossRefGoogle Scholar
  35. 35.
    J.S. Glaser, J.J. Nasadoski, P.A. Losee, A.S. Kashyap, K.S. Matocha, J.L. Garrett, L.D. Stevanovic, Direct comparison of silicon and silicon carbide power transistors in high-frequency hard-switched applications, in Applied Power Electronics Conference and Exposition (APEC), pp. 1049–1056 (2011)Google Scholar
  36. 36.
    R.C.S. Machado, J.C. Braz Filho, Next generation arc welding machines based on Silicon Carbide MOSFETS and high frequency planar magnetics, in IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (2015)Google Scholar
  37. 37.
    K. Devakumaran, P.K. Ghosh, Thermal characteristics of weld and HAZ during pulse current gas metal arc weld bead deposition on HSLA steel plate. Mat. Manuf. Process 25(7), 616–630 (2010)CrossRefGoogle Scholar
  38. 38.
    K. Dezelak, J. Pihler, G. Stumberger, B. Klopcic, D. Dolinar, Artificial neural network applied for detection of magnetization level in the magnetic core of a welding transformer. IEEE Trans Mag. 2, 46 (2010)Google Scholar
  39. 39.
    T. Parthipan, C. Ribton, P. Mudge, R. Nilavalan, W. Balachandran, Enhancement of high voltage electron beam welding power supply: Rapid recovery after flashover detection for void-free welding, in IEEE Proceedings (2013)Google Scholar
  40. 40.
    K. Oi, M. Murayama, Recent trend of welding technology development and applications. JFE Technical Report (2015)Google Scholar
  41. 41.
    V. Kumar, N. Chandrasekhar, S.K. Albert, J. Jayapandian, Performance analysis of arc welding parameters using self-organizing maps and probability density distributions, in IEEE Conference on Control Systems (2016)Google Scholar
  42. 42.
    D. Dong, H. Zandong, X. Ping, Z. Qian, Structure and control of an inverter type power source for robot arc welding, Tsinghua Sci. Technol. (1998) pp. 1026–1028Google Scholar
  43. 43.
    Y. Takasaki, T. Sonoda, Current controllability of the low-voltage 10 kA inverter power sources. IEEE Trans. Mag. 10, 4054–4056 (2005)CrossRefGoogle Scholar
  44. 44.
    T. Uezono, T. Hongjun, Application to MIG welding using welding power source equipped with digital filtering process. Weld. Int. 299–303 (2008) CrossRefGoogle Scholar
  45. 45.
    K. Skrzyniecki, P. Cegielski, A. Kolasa, A. Krajewski, Electromagnetic compatibility of power supplies for arc welding. Weld Int. 27, 623–628 (2013)CrossRefGoogle Scholar
  46. 46.
    B. Klopcic, D. Dolinar, G. Stumberger, Advanced control of a resistance spot welding system. IEEE Trans. Power Electron. 23(1), 144–152 (2008)CrossRefGoogle Scholar
  47. 47.
    Q. Pang, M. Zhang, Design of digital control system for pulsed MIG welding power source, in Intelligent Control and Automation (WCICA) 8th World Congress (2010), pp. 2492–2495Google Scholar
  48. 48.
    A. Navarro-Crespin, R. Casanueva, F.J. Azcondo, Alternating current welding using four quadrant switches, in IEEE Applied Power Electronics Conference and Exposition (APEC) (2015), pp. 3330–3334Google Scholar
  49. 49.
    P.K. Palani, N. Murugan, Selection of parameters of pulsed current gas metal arc welding, J. Mater. Process. Technol. 172, 1–10 (2006)CrossRefGoogle Scholar
  50. 50.
    A.K. Paul, Power electronics help reduce diversity of arc welding process for optimal performance, in 2010 Joint International Conference on Power Electronics, Drives and Energy Systems & 2010 Power India (2010), pp. 4–10Google Scholar
  51. 51.
    K. Skrzyniecki, P. Kołodziejczak, P. Cegielski, Experimental studies on stability of power source—ARC, in IEEE conference (2013) pp. 359–362Google Scholar
  52. 52.
    A. Kolasa, A. Matsunawa, Y. Arata, Dynamic characteristics of variable frequency pulsed TIG arc. Trans. JWRI (1986)Google Scholar
  53. 53.
    J. Bo, Study on the dynamic process of arc welding inverter, Polymer (Guildf) (1992) pp. 783–786Google Scholar
  54. 54.
    S. Yamane, S. Xiang, Y. Kaneko, K. Oshima, Effect of power source characteristic on CO2 short circuiting arc welding_TF. Sci. Technol. Weld. Join 10, 281–286 (2005)Google Scholar
  55. 55.
    K. Devakumaran, N. Rajasekaran, P.K. Ghosh, Process characteristics of inverter type GMAW power source under static and dynamic operating conditions. Mater. Manuf. Process 27, 1450–1456 (2012)CrossRefGoogle Scholar
  56. 56.
    A. Kolasa, P. Cegielski , K. Skrzyniecki, Study of static and dynamic characteristics of welding power source-arc systems. Weld. Int. 29, 865–867 (2015)Google Scholar
  57. 57.
    E.J. Oshaben, DC-DC Power Converter Design For Application In Welding Power Source For The Retail Market (2005)Google Scholar
  58. 58.
    Y.M. Chae, J.S. Gho, H.S. Mok, G.H. Choe, W.S. Shin, A new instantaneous output current control method for inverter arc welding machine, in Power Electronics Specialists Conference (1999), pp. 521–526Google Scholar
  59. 59.
    Y. Takasaki, T. Sonoda, Current controllability of the low-voltage 10 kA inverter power sources. IEEE Trans. Mag. 4054–4056 (2005)CrossRefGoogle Scholar
  60. 60.
    B. Klopcic, D. Dolinar, G. Stumberger, Advanced control of a resistance spot welding system. IEEE Trans. Power Electron. 144–152 (2008)CrossRefGoogle Scholar
  61. 61.
    H. Pollock, O. Flower, Series-parallel load-resonant converter for controlled-current arc welding power supply. IEEE Proc. 3 (1996)Google Scholar
  62. 62.
    K. Janson, J. Jarvik, Load adapting mains frequency resonant converters for supplying electrical arc—a new way in power electronics. EEE Annu. Power Electron. Spec. Conf. 2, 2090–2096 (1998)Google Scholar
  63. 63.
    J. Shklovski, K. Janson, Development of constant-power source for arc welding. Proc. Bienn. Balt. Electron. Conf. BEC, 225–258 (2012)Google Scholar
  64. 64.
    B. Singh, G. Bhuvaneswari, S. Narula, PFC bridgeless converter for welding power supply with improved power quality, in IEEE International Conference on Power Electronic Drives Energy System PEDES (2014)Google Scholar
  65. 65.
    B. Singh, G. Bhuvaneswari, S. Narula, Power factor corrected welding power supply using modified zeta converter. in IEEE Conference (2016) pp. 617–625Google Scholar
  66. 66.
    W. Fischer, F. Werther, H. Mecke, Soft switching inverter power source for arc welding, in EPE’79, Trondheim, vol. 1 (1998) pp. 333–337Google Scholar
  67. 67.
    Y.M. Chae, J.S. Gho, H.S. Mok, G.H. Choe, W.S. Shin, A New Instantaneous Output Current Control Method for Inverter Arc Welding Machine (1999), pp. 0–5Google Scholar
  68. 68.
    C. Shu-Jun, Y. Shu-Yan, W. Dong-Ping, Z. Hua, H. Ji-qiang, Novel three-phase welding inverter power supply with high power factor, pp. 1113–1118 (2003)Google Scholar
  69. 69.
    J. Zhu, H. Shi, K. Lu, K.Y. Lee, Study on IGBT inverter power supply for CO2 arc welding and embedded arm based waveform control, in International Conference on Mechatronics and Automation, 2007. ICMA 2007, pp. 2634–2638Google Scholar
  70. 70.
    S.Z. Wei, W. Qiong, X. Peng, J. De Li, A Switching-inverter power controller based on fuzzy adaptive PID, in Proceedings of the 6th International Forum on Strategic Technology, IFOST 2011 (2011), vol. 2, pp. 695–699Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • S. Arungalai Vendan
    • 1
    Email author
  • Liang Gao
    • 2
  • Akhil Garg
    • 3
  • P. Kavitha
    • 4
  • G. Dhivyasri
    • 5
  • Rahul SG
    • 6
  1. 1.VIT UniversityVelloreIndia
  2. 2.State Key Lab of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhanChina
  3. 3.Intelligent Manufacturing Key Laboratory of Ministry of EducationShantou UniversityShantouChina
  4. 4.VIT UniversityVelloreIndia
  5. 5.School of Electrical EngineeringVIT UniversityVelloreIndia
  6. 6.School of Electrical EngineeringVIT UniversityVelloreIndia

Personalised recommendations