Skip to main content

Small-Molecule Inhibitors for the β-Catenin/T Cell Factor Protein-Protein Interaction

  • Chapter
  • First Online:

Abstract

The aberrant activation of canonical Wnt signaling is strongly associated with the initiation and progression of many cancers. Cancer stem cells, which are resistant to conventional chemo- and radiotherapies and especially virulent, are also controlled by the hyperactivation of canonical Wnt signaling. Therefore, the disruption of this signaling pathway represents an attractive strategy for cancer therapy. The formation of the β-catenin/Tcf complex in the cell nucleus is the penultimate step of canonical Wnt signaling; hence, these protein-protein interactions (PPIs) were identified as an appealing therapeutic target for anticancer drug development. Herein, the approaches for the discovery of small-molecule inhibitors to disrupt the β-catenin/T cell factor protein-protein interaction, including high throughput screening (HTS), virtual screening, and hot spots-based rational design, were reviewed and the representative examples were presented. These novel inhibitors provide a good starting point for further research. Furthermore, the challenge and opportunity in this researching area, such as further improvement of the binding potency and selectivity, as well as the development of drug-like inhibitors for cell-based and in vivo studies were also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Clevers H (2006) Wnt/β-Catenin signaling in development and disease. Cell 127:469–480

    Article  CAS  PubMed  Google Scholar 

  2. Hartmann C (2006) A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol 16:151–158

    Article  CAS  PubMed  Google Scholar 

  3. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  4. Okamura RM, Sigvardsson M, Galceran J, Verbeek S, Clevers H, Grosschedl R (1998) Redundant regulation of T-cell differentiation and TCRα gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8:11–20

    Article  CAS  PubMed  Google Scholar 

  5. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    Article  CAS  PubMed  Google Scholar 

  6. MacDonald BT, Tamai K, He X (2009) Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149:1192–1205

    Article  CAS  PubMed  Google Scholar 

  8. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W (1996) Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382:638–642

    Article  CAS  PubMed  Google Scholar 

  9. Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destree O, Clevers H (1996) XTcf-3 transcription factor mediates β-Catenin-induced axis formation in xenopus embryos. Cell 86:391–399

    Article  CAS  PubMed  Google Scholar 

  10. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275:1787–1790

    Article  CAS  Google Scholar 

  11. Tetsu O, McCormick F (1999) β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426

    Article  CAS  PubMed  Google Scholar 

  12. de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, Fabre M, Chelly J, Beldjord C, Kahn A, Perret C (1998) Somatic mutations of the β-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA 95:8847–8851

    Article  Google Scholar 

  13. Lu D, Zhao Y, Tawatao R, Cottam HB, Sen M, Leoni LM, Kipps TJ, Corr M, Carson DA (2004) Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 101:3118–3123

    Article  CAS  PubMed  Google Scholar 

  14. Sukhdeo K, Mani M, Zhang Y, Dutta J, Yasui H, Rooney MD, Carrasco DE, Zheng M, He H, Tai YT, Mitsiades C, Anderson KC, Carrasco DR (2007) Targeting the beta-catenin/Tcf transcriptional complex in the treatment of multiple myeloma. Proc Natl Acad Sci USA 104:7516–7521

    Article  PubMed  Google Scholar 

  15. Kim JS, Crooks H, Foxworth A, Waldman T (2002) Proof-of-principle: oncogenic beta-catenin is a valid molecular target for the development of pharmacological inhibitors. Mol Cancer Ther 1:1355–1359

    PubMed  CAS  Google Scholar 

  16. van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP, Tjon-Pon-Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H (2002) The beta-catenin/Tcf-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250

    Article  PubMed  Google Scholar 

  17. Ashihara E, Kawata E, Nakagawa Y, Shimazaski C, Kuroda J, Taniguchi K, Uchiyama H, Tanaka R, Yokota A, Takeuchi M, Kamitsuji Y, Inaba T, Taniwaki M, Kimura S, Maekawa T (2009) beta-Catenin small interfering RNA successfully suppressed progression of multiple myeloma in a mouse model. Clin Cancer Res: An Official J Am Assoc Cancer Res 15:2731–2738

    Article  CAS  Google Scholar 

  18. Scholer-Dahirel A, Schlabach MR, Loo A, Bagdasarian L, Meyer R, Guo R, Woolfenden S, Yu K, Markovits J, Killary K, Sonkin D, Yao Y, Warmuth M, Sellers WR, Schlegel R, Stegmeier F, Mosher RE, McLaughlin ME (2011) Maintenance of adenomatous polyposis coli (APC)-mutant colorectal cancer is dependent on Wnt/beta-catenin signaling. Proc Natl Acad Sci USA 108:17135–17140

    Article  PubMed  Google Scholar 

  19. Weber BN, Chi A, Chavez A, Yashiro-Ohtani Y, Yang Q, Shestova O, Bhandoola A (2011) A critical role for Tcf-1 in T-lineage specification and differentiation. Nature 476:63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Graham TA, Weaver C, Mao F, Kimelman D, Xu W (2000) Crystal structure of a β-catenin/Tcf complex. Cell 103:885–896

    Article  CAS  PubMed  Google Scholar 

  21. Sampietro J, Dahlberg CL, Cho US, Hinds TR, Kimelman D, Xu W (2006) Crystal structure of a β-catenin/Bcl9/Tcf4 complex. Mol Cell 24:293–300

    Article  CAS  PubMed  Google Scholar 

  22. Poy F, Lepourcelet M, Shivdasani RA, Eck MJ (2001) Structure of a human Tcf4-β-catenin complex. Nat Struct Biol 8:1053–1057

    Article  CAS  PubMed  Google Scholar 

  23. Graham TA, Ferkey DM, Mao F, Kimelman D, Xu W (2001) Tcf4 can specifically recognize β-catenin using alternative conformations. Nat Struct Biol 8:1048–1052

    Article  CAS  PubMed  Google Scholar 

  24. von Kries JP, Winbeck G, Asbrand C, Schwarz-Romond T, Sochnikova N, Dell’Oro A, Behrens J, Birchmeier W (2000) Hot spots in beta-catenin for interactions with LEF-1, conductin and APC. Nat Struct Biol 7:800–807

    Article  CAS  Google Scholar 

  25. Gail R, Frank R, Wittinghofer A (2005) Systematic peptide array-based delineation of the differential beta-catenin interaction with Tcf4, E-cadherin, and adenomatous polyposis coli. J Mol Biol 280:7107–7117

    CAS  Google Scholar 

  26. Lepourcelet M, Chen Y, France DS, Wang H, Crews P, Petersen F, Bruseo C, Wood AW, Shivdasani RA (2004) Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5:91–102

    Article  CAS  PubMed  Google Scholar 

  27. Gonsalves FC, Klein K, Carson BB, Katz S, Ekas LA, Evans S, Nagourney R, Cardozo T, Brown AM, DasGupta R (2011) An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway. Proc Natl Acad Sci USA 108:5954–5963

    Article  PubMed  Google Scholar 

  28. Catrow JL, Zhang Y, Zhang M, Ji H (2015) Discovery of selective small-molecule inhibitors for the β-Catenin/T-cell factor protein-protein interaction through the optimization of the acyl hydrazone moiety. J Med Chem 58:4678–4692

    Article  CAS  PubMed  Google Scholar 

  29. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740

    Article  CAS  PubMed  Google Scholar 

  30. Malvezzi A, de Rezende L, Izidoro M A, Cezari M H S, Juliano L, do Amaral A T (2008) Uncovering false positives on a virtual screening search for cruzain inhibitors. Bioorg Med Chem Lett 18:350–354

    Article  CAS  Google Scholar 

  31. Trosset JY, Dalvit C, Knapp S, Fasolini M, Veronesi M, Mantegani S, Gianellini LM, Catana C, Sundstrom M, Stouten PF, Moll JK (2006) Inhibition of protein-protein interactions: the discovery of druglike beta-catenin inhibitors by combining virtual and biophysical screening. Proteins 64:60–67

    Article  CAS  PubMed  Google Scholar 

  32. Tian W, Han X, Yan M, Xu Y, Duggineni S, Lin N, Luo G, Li YM, Han X, Huang Z, An J (2012) Structure-based discovery of a novel inhibitor targeting the beta-catenin/Tcf4 interaction. Biochemistry 51:724–731

    Article  CAS  PubMed  Google Scholar 

  33. Villoutreix BO, Kuenemann MA, Poyet JL, Bruzzoni-Giovanelli H, Labbé C, Lagorce D, Sperandio O, Miteva MA (2014) Drug-like protein-protein interaction modulators: challenges and opportunities for drug discovery and chemical biology. Mol Inform 33:414–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267:383–386

    Article  CAS  PubMed  Google Scholar 

  35. Guo W, Wisniewski JA, Ji H (2014) Hot spot-based design of small-molecule inhibitors for protein–protein interactions. Bioorg Med Chem Lett 24:2546–2554

    Article  CAS  PubMed  Google Scholar 

  36. Yu B, Huang Z, Zhang M, Dillard DR, Ji H (2013) Rational design of small-molecule inhibitors for beta-catenin/T-cell factor protein-protein interactions by bioisostere replacement. ACS Chem Biol 8:524–529

    Article  CAS  PubMed  Google Scholar 

  37. Huang Z, Zhang M, Burton SD, Katsakhyan LN, Ji H (2014) Targeting the Tcf4 G13ANDE17 binding site to selectively disrupt β-catenin/T-cell factor protein-protein interactions. ACS Chem Biol 9:193–201

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (21602060, Y.-Q. Z. and 21372073, 21738002 and 21572055, W. W.) for the financial support of the research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongqiang Zhang or Wei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Wang, W. (2018). Small-Molecule Inhibitors for the β-Catenin/T Cell Factor Protein-Protein Interaction. In: Sheng, C., Georg, G. (eds) Targeting Protein-Protein Interactions by Small Molecules. Springer, Singapore. https://doi.org/10.1007/978-981-13-0773-7_9

Download citation

Publish with us

Policies and ethics