Skip to main content

High-Order Compact Finite Difference Scheme for Euler–Bernoulli Beam Equation

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 741))

Abstract

Structures such as buildings and bridges consist of a number of components such as beams, columns, and foundations, all of which act together to ensure that the loadings that the structure carries is safely transmitted to the supporting ground below. The study of the design and deflection of the beam under load play an important role in the strength analysis of a structure. In the present paper, we have applied high-order compact finite difference scheme using MATLAB to approximate the solution of Euler–Bernoulli beam equation which determines the deflection of the beam under the load acting on the beam.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gupta Datta, A., Lake, L.W., Pope, G.A., Sepehrnoori, K.: High-resolution monotonic schemes for reservoir fluid flow simulation. Situ 15, 289–317 (1991)

    Google Scholar 

  2. Leonard, B.P.: A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 19, 59–98 (1979)

    Article  Google Scholar 

  3. Carpenter, M.H., Gottlier, D., Abarbanel, S.: The stability of numerical boundary treatments for compact high-order finite difference schemes. J. Comput. Phys. 108, 272–295 (1993)

    Article  MathSciNet  Google Scholar 

  4. Li, M., Tang, T., Fornberg, B.: A compact fourth-order finite difference scheme for the steady incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 20, 1137–1151 (1995)

    Article  MathSciNet  Google Scholar 

  5. Gupta, M.M., Manohar, R.P., Stephenson, J.W.: A single cell high order scheme for the convection-diffusion equation with variable coefficients. Int. J. Numer. Methods Fluids 4, 641–651 (1984)

    Article  MathSciNet  Google Scholar 

  6. MacKinnon, R.J., Carey, G.F.: Analysis of material interface discontinuities and superconvergent fluxes in finite difference theory. J. Comput. Phys. 75, 151–167 (1988)

    Article  MathSciNet  Google Scholar 

  7. MacKinnon, R.J., Carey, G.F.: Superconvergent derivatives: a Taylor series analysis. Int. J. Numer. Methods Eng. 28, 489–509 (1989)

    Article  MathSciNet  Google Scholar 

  8. MacKinnon, R.J., Carey, G.F.: Nodal superconvergence and solution enhancement for a class of finite element and finite difference methods. SIAM J. Sci. Stat. Comput. 11, 343–353 (1990)

    Article  MathSciNet  Google Scholar 

  9. MacKinnon, R.J., Johnson, R.W.: Differential equation based representation of truncation errors for accurate numerical simulation. Int. J. Numer. Methods Fluids 13, 739–757 (1991)

    Article  Google Scholar 

  10. Abarbanel, S., Kumar, A.: Compact high order schemes for the Euler equations. J. Sci. Comput. 3, 275–288 (1988)

    Article  MathSciNet  Google Scholar 

  11. Dennis, S.C.R., Hudson, J.D.: Compact h4 finite difference approximations to operators of Navier-Stokes type. J. Comput. Phys. 85, 390–416 (1989)

    Article  MathSciNet  Google Scholar 

  12. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  Google Scholar 

  13. Ananthakrishnaiah, U., Manohar, R., Stephenson, J.W.: High-order methods for elliptic equations with variable coefficients. Numer. Methods Partial Differ. Equ. 3, 219–227 (1987)

    Article  MathSciNet  Google Scholar 

  14. Spotz, W.F.: High Order Compact Finite Difference Schemes for Computational Mechanics. Ph.D. thesis, University of Texas at Austin, Austin, TX (1995)

    Google Scholar 

  15. Spotz, W.F., Carey, G.F.: High order compact scheme for the stream-function vorticity equations. Int. J. Numer. Methods Eng. 38, 3497–3512 (1995)

    Article  MathSciNet  Google Scholar 

  16. Spotz, W.F., Carey, G.F.: High order compact formulation for the 3D Poisson equation. Numer. Methods Partial Differen. Equ. 12, 235–243 (1996)

    Article  Google Scholar 

  17. Jain, M.K., Jain, R.K., Mohanty, R.K.: Fourth order finite difference method for three dimensional elliptic equations with nonlinear first-derivative terms. Numer. Methods Partial Differen. Equ. 8(6), 575–591 (1992)

    Article  MathSciNet  Google Scholar 

  18. Lax, P.D., Wendroff, B.: Difference schemes for hyperbolic equations with high order accuracy. Commun. Pure Appl. Math. 17, 381–398 (1964)

    Article  MathSciNet  Google Scholar 

  19. MacKinnon, R.J., Langerman, M.A.: A compact high order finite element method for elliptic transport problems with variable coefficients. Numer. Methods Partial Differen. Equ. 10, 1–19 (1994)

    Article  MathSciNet  Google Scholar 

  20. Dukowicz, J.K., Ramshaw, J.D.: Tensor viscosity method for convection in numerical fluid dynamics. J. Comput. Phys. 32, 71–79 (1979)

    Article  Google Scholar 

  21. Wong, H.H., Raithby, G.D.: Improved finite difference methods based on a critical evaluation of the approximation errors. Numer. Heat Transf. 2, 139–163 (1979)

    Article  Google Scholar 

  22. Dennis, S.C.R., Wing, Q.: Generalized finite differences for operators of Navier-Stokes type. In: Proceedings of the 10th International Conference on Numerical Methods in Fluid Dynamics vol. 264, pp. 222–228 (1986)

    Google Scholar 

  23. Spotz, W.F.: Superconvergent finite difference methods with applications to viscous flow. Master’s thesis, University of Texas at Austin, Austin (1991)

    Google Scholar 

  24. Clough, R.W., Penzien, J.: Dynamics of Structures. McGraw-Hill (1993)

    Google Scholar 

  25. Gere, J.M.: Mechanics of Materials. Nelson Thomas Publishing (2002)

    Google Scholar 

  26. Timoshenko, S.P.: History of Strength of Materials. Dover Publications Inc., New York (1953)

    Google Scholar 

  27. Traill-Nash, R.W., Collar, A.R.: The effects of shear flexibility and rotatory inertia on the bending vibrations of beams. Q. J. Mech. Appl. Mech. 6, 186–213 (1953)

    Article  MathSciNet  Google Scholar 

  28. Abbas, B.A.H., Thomas, J.: The second frequency spectrum of Timoshenko beams. J. Sound Vib. 51, 123–137 (1977)

    Article  Google Scholar 

  29. Thankane, K.S., Styš, T.: Finite difference method for beam equation with free ends using mathematics. South. Afr. J. Pure Appl. Math. 4, 61–78 (2009)

    Google Scholar 

  30. Kumar, M., Joshi, P.: Some numerical techniques to solve elliptic interface problems. Numer. Methods Partial Differen. Equ. 28, 94–114 (2012)

    Article  Google Scholar 

  31. Joshi, P., Kumar, M.: Mathematical model and computer simulation of three dimensional thin film elliptic interface problems. Comput. Math Appl. 63(1), 25–35 (2012)

    Article  MathSciNet  Google Scholar 

  32. Kumar, M., Joshi, P.: A mathematical model and numerical solution of a one dimensional steady state heat conduction problem by using high order immersed interface method on non-uniform mesh. Int. J. Nonlinear Sci. (IJNS) 14(1), 11–22 (2012)

    Google Scholar 

  33. Kumar, M., Joshi, P.: Mathematical modelling and computer simulation of steady state heat conduction in anisotropic multi-layered bodies. Int. J. Comput. Sci. Math. 4(2), 85–119 (2013)

    Article  MathSciNet  Google Scholar 

  34. Pathak, M., Joshi, P.: High order numerical solution of an volterra integro-differential equation arising in oscillating magnetic fields using variational iteration method. Int. J. Adv. Sci. Technol. 69, 47–56 (2014)

    Article  Google Scholar 

  35. Pathak, M., Joshi, P.: A high order solution of three dimensional time dependent nonlinear convective-diffusive problem using modified variational iteration method. Int. J. Sci. Eng. 8(1), 1–5 (2015)

    Google Scholar 

Download references

Acknowledgements

This paper is part of the project [No.-UCS&T/R&D/PHY SC.-10/12-13/6180] funded by Uttarakhand State Council for Science and Technology, Dehradun, Uttarakhand, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maheshwar Pathak .

Editor information

Editors and Affiliations

Appendix

Appendix

Matlab Programs:

Example 1:

clc; clear all; t=0; t=cputime; format long; n=input(‘enter the number of subintervals’); x=linspace(0,1,n+1); h=1/n; %----------------------------------------------------- f=[]; g=[]; fori=1:n+1       f=[f;(8*(pi^4)*sin(2*pi*x(i)))]; end %----------------------------------------------------- %right side function g for v fori=2:n         g=[g;(f(i-1)/12)+(f(i+1)/12)+(5*f(i)/6)]; end %----------------------------------------------------- %left boundary lb=0; %right boundary rb=0; %----------------------------------------------------- %coefficient matrix A A=sparse(n-1,n-1); %diagonal elements of A fori=1:n-1 A(i,i)=-2/(h^2); end %left elements of A fori=2:n-1 A(i,i-1)=1/h^2; end %right elements of A fori=1:n-2 A(i,i+1)=1/h^2; end %----------------------------------------------------- %modified g due to left boundary g(1)=g(1)-(lb/h^2); %modified g due to right boundary g(n-1)=g(n-1)-(rb/h^2); %----------------------------------------------------- v=[]; v=A\g; v=[lb;v;rb]; %----------------------------------------------------- %right side function q for u q=[]; fori=2:n     q=[q;(v(i-1)/12)+(v(i+1)/12)+(5*v(i)/6)]; end %----------------------------------------------------- %modified q due to left boundary q(1)=q(1)-0; %modified q due to right boundary q(n-1)=q(n-1)-0; %----------------------------------------------------- %calculate the value of u u=[]; u=A\q; %----------------------------------------------------- %numerical solution nums=[]; nums=[nums;0;u;0]; %----------------------------------------------------- %exact solution ex=[]; fori=1:n+1 ex=[ex;(sin(pi*(x(i)))*cos(pi*(x(i))))]; end %----------------------------------------------------- %absolute error er=[]; fori=1:n+1 er=[er;abs(nums(i)-ex(i))]; end %----------------------------------------------------- %maximum absolute error maxer=max(er) timing=cputime-t %----------------------------------------------------- % graph plot(x,nums,’b’,x,ex,’*’); plot(x,er);

Example 2:

format long; clc; n=input(‘enter the number of subintervals’); x=linspace(0,1,n+1); h=1/n; %----------------------------------------------------- f=[]; g=[]; fori=1:n+1       f=[f;((pi^4)*x(i)*sin(pi*(x(i))))

     -(4*(pi^3)*cos(pi*(x(i))))]; end %----------------------------------------------------- %right side function g for v fori=2:n       g=[g;(f(i-1)/12)+(f(i+1)/12)+(5*f(i)/6)]; end %----------------------------------------------------- %left boundary lb=2*pi; %right boundary rb=-2*pi; %----------------------------------------------------- %coefficient matrix A A=sparse(n-1,n-1); %diagonal elements of A fori=1:n-1 A(i,i)=-2/(h^2); end %left elements of A fori=2:n-1 A(i,i-1)=1/h^2; end %right elements of A fori=1:n-2 A(i,i+1)=1/h^2; end %----------------------------------------------------- %modified g due to left boundary g(1)=g(1)-(lb/h^2); %modified g due to right boundary g(n-1)=g(n-1)-(rb/h^2); %----------------------------------------------------- v=[]; v=A\g; v=[lb;v;rb]; %----------------------------------------------------- %right side function q for u q=[]; fori=2:n       q=[q;(v(i-1)/12)+(v(i+1)/12)+(5*v(i)/6)]; end %----------------------------------------------------- %modified q due to left boundary q(1)=q(1)-0; %modified q due to right boundary q(n-1)=q(n-1)-0; %----------------------------------------------------- %calculate the value of u u=[]; u=A\q; %----------------------------------------------------- %numerical solution nums=[]; nums=[nums;0;u;0]; %----------------------------------------------------- %exact solution ex=[]; w=[]; fori=1:n+1 ex=[ex;(x(i)*sin(pi*x(i)))]; end %----------------------------------------------------- %absolute error er=[]; fori=1:n+1 er=[er;abs((nums(i)-ex(i)))]; end %----------------------------------------------------- %maximum absolute error maxer=max(er) %----------------------------------------------------- % graph plot(x,nums,’b’,x,ex,’o’); % plot(x,er);

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pathak, M., Joshi, P. (2019). High-Order Compact Finite Difference Scheme for Euler–Bernoulli Beam Equation. In: Yadav, N., Yadav, A., Bansal, J., Deep, K., Kim, J. (eds) Harmony Search and Nature Inspired Optimization Algorithms. Advances in Intelligent Systems and Computing, vol 741. Springer, Singapore. https://doi.org/10.1007/978-981-13-0761-4_35

Download citation

Publish with us

Policies and ethics