Skip to main content

Strain Improvement for Industrial Production of Lignocellulolytic Enzyme by Talaromyces cellulolyticus

Abstract

Talaromyces cellulolyticus (formerly known as Acremonium cellulolyticus) is a commercial fungal source used for industrial enzyme production for silage preparation. In this chapter, the development of T. cellulolyticus strains to produce lignocellulolytic enzymes suitable for the hydrolysis of target biomass is reviewed. High-yield production and composition improvements of lignocellulolytic enzymes in T. cellulolyticus have been succeeded by mutagenesis, genetic engineering, and enzyme preparation up to the present date. Recent developments of T. cellulolyticus genetic tools including whole genome sequencing, homologous recombination, marker recycling, RNA interference, genome editing and transcriptional regulation, a concept of core and accessary enzymes, and their utilization for strain improvements will be discussed.

Keywords

  • Lignocellulolytic enzyme
  • Industrial production
  • Talaromyces cellulolyticus

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-0749-2_7
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-981-13-0749-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2

References

  • Aro N, Ilmen M, Saloheimo A, Penttilä M (2003) ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl Environ Microbiol 69:56–65

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Asada S, Watanabe S, Fujii T, Inoue H, Ishikawa K, Sawayama S (2014) RNAi knockdown of potent sugar sensor in cellulase-producing fungus Acremonium cellulolyticus. Appl Biochem Biotechnol 172:3009–3015

    CrossRef  PubMed  CAS  Google Scholar 

  • Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Aslam N, Walton JD (2010) Synthetic enzyme mixtures for biomass deconstruction: production and optimization of a core set. Biotechnol Bioeng 106:707–720

    CrossRef  PubMed  CAS  Google Scholar 

  • Barta Z, Kovacs K, Reczey K, Zacchi G (2015) Process design and economics of on-site cellulase production on various carbon sources in a softwood-based ethanol plant. Enzyme Res 2010:734182

    Google Scholar 

  • Bischof RH, Ramoni J, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Factories 15:106

    CrossRef  CAS  Google Scholar 

  • Brakhage AA, Andrianopoulos A, Kato M, Steidl S, Davis MA, Tsukagoshi N, Hynes MJ (1999) HAP-Like CCAAT-binding complexes in filamentous fungi: implications for biotechnology. Fungal Genet Biol 27:243–252

    CrossRef  PubMed  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    CrossRef  PubMed  CAS  Google Scholar 

  • Dowzer CE, Kelly J (1989) Cloning of the creA gene from Aspergillus nidulans: a gene involved in carbon catabolite repression. Curr Genet 15:457–459

    CrossRef  CAS  PubMed  Google Scholar 

  • Ellila S, Fonseca L, Uchima C, Cota J, Goldman GH, Saloheimo M, Sacon V, Siika-aho M (2017) Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol Biofuels 10:30

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang X, Yano S, Inoue H, Sawayama S (2008) Lactose enhances cellulase production by the filamentous fungus Acremonium cellulolyticus. J Biosci Bioeng 106:115–120

    CrossRef  PubMed  CAS  Google Scholar 

  • Fang X, Yano S, Inoue H, Sawayama S (2009) Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J Biosci Bioeng 107:256–261

    CrossRef  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    CrossRef  PubMed  CAS  Google Scholar 

  • Fujii T, Fang X, Inoue H, Murakami K, Sawayama S (2009) Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnol Biofuels 2:24

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujii T, Iwata K, Murakami K, Yano S, Sawayama S (2012) Isolation of uracil auxotrophs of the fungus Acremonium cellulolyticus and the development of a transformation system with the pyrF gene. Biosci Biotechnol Biochem 76:245–249

    CrossRef  PubMed  CAS  Google Scholar 

  • Fujii T, Inoue H, Ishikawa K (2013) Enhancing cellulase and hemicellulase production by genetic modification of the carbon catabolite repressor gene, creA, in Acremonium cellulolyticus. AMB Express 3:73

    Google Scholar 

  • Fujii T, Hoshino T, Inoue H, Yano S (2014a) Taxonomic revision of the cellulose-degrading fungus Acremonium cellulolyticus nome nudum to Talaromyces based on phylogenetic analysis. FEMS Microbiol Lett 351:32–41

    CrossRef  PubMed  CAS  Google Scholar 

  • Fujii T, Inoue H, Ishikawa K (2014b) Characterization of the xylanase regulator protein gene, xlnR, in Talaromyces cellulolyticus (formerly known as Acremonium cellulolyticus). Biosci Biotechnol Biochem 78:1564–1567

    CrossRef  PubMed  CAS  Google Scholar 

  • Fujii T, Koike H, Sawayama S, Yano S, Inoue H (2015a) Draft genome sequence of Talaromyces cellulolyticus Y-94, a source of lignocellulosic biomass-degrading enzymes. Genome Announc 3(1):e00014–e00015

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Fujii T, Inoue H, Ishikawa K (2015b) Decreased cellulase and xylanase production in the fungus Talaromyces cellulolyticus by disruption of tacA and tctA genes, encoding putative zinc finger transcriptional factors. Appl Biochem Biotechnol 175:3218–3229

    CrossRef  PubMed  CAS  Google Scholar 

  • Fujii T, Inoue H, Ishikawa K, Hoshino T (2017) Deletion analysis of GH7 endoglucanase gene (cel7B) promoter region in a Talaromyces cellulolyticus ligD-disrupted strain. Appl Biochem Biotechnol 183:1516–1525. http://sci-hub.tw/10.1007/s12010-017-2519-zl

  • Fukasawa T, Nojiri C, Matsuhashi N, Nishizawa K, Okakura K, Yamanobe T (2007) Novel enzyme having β-glucosidase activity and use thereof. US patent, 7256031 B2

    Google Scholar 

  • Gao D, Chundawat SP, Krishnan C, Balan V, Dale BE (2010) Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresour Technol 101:2770–2781

    CrossRef  PubMed  CAS  Google Scholar 

  • Gao MT, Yano S, Inoue H, Sakanishi K (2012) Production of ethanol from potato pulp: investigation of the role of the enzyme from Acremonium cellulolyticus in conversion of potato pulp into ethanol. Process Biochem 47:2110–2115

    CrossRef  CAS  Google Scholar 

  • Gao MT, Yano S, Minowa T (2014) Characteristics of enzymes from Acremonium cellulolyticus strains and their utilization in the saccharification of potato pulp. Biochem Eng J 83:1–7

    CrossRef  CAS  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    CrossRef  CAS  Google Scholar 

  • Hayata K, Asada S, Fujii T, Inoue H, Ishikawa K, Sawayama S (2014) Gene targeting by RNAi-mediated knockdown of potent DNA ligase IV homologue in the cellulase-producing fungus Talaromyces cellulolyticus. Appl Biochem Biotechnol 174:1697–1704

    CrossRef  PubMed  CAS  Google Scholar 

  • Hideno A, Inoue H, Tsukahara K, Yano S, Fang X, Endo T, Sawayama S (2011) Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source. Enzym Microb Technol 48:162–168

    CrossRef  CAS  Google Scholar 

  • Ikeda Y, Hayashi H, Okuda N, Park EY (2007) Efficient cellulase production by the filamentous fungus Acremonium cellulolyticus. Biotechnol Prog 23:333–338

    CrossRef  PubMed  CAS  Google Scholar 

  • Ilmen M, Onnela ML, Klemsdal S, Keranen S, Penttilä M (1996) Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei. Mol Gen Genet 253:303–314

    PubMed  CAS  Google Scholar 

  • Inoue H, Fujii T, Yoshimi M, Taylor LE II, Decker SR, Kishishita S, Nakabayashi M, Ishikawa K (2013) Construction of a starch-inducible homologous expression system to produce cellulolytic enzymes from Acremonium cellulolyticus. J Ind Microbiol Biotechnol 40:823–830

    CrossRef  PubMed  CAS  Google Scholar 

  • Inoue H, Decker SR, Taylor LE II, Yano S, Sawayama S (2014) Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass. Biotechnol Biofuels 7:151

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Inoue H, Kishishita S, Kumagai A, Kataoka M, Fujii T, Ishikawa K (2015a) Contribution of a family 1 carbohydrate-binding module in thermostable glycoside hydrolase 10 xylanase from Talaromyces cellulolyticus toward synergistic enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 8:77

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Inoue H, Yano S, Sawayama S (2015b) Effect of β-mannanase and β-mannosidase supplementation on the total hydrolysis of softwood polysaccharides by the Talaromyces cellulolyticus cellulase System. Appl Biochem Biotechnol 176:1673–1686

    CrossRef  PubMed  CAS  Google Scholar 

  • Inoue H, Kitao C, Yano S, Sawayama S (2016) Production of β-xylosidase from Trichoderma asperellum KIF125 and its application in efficient hydrolysis of pretreated rice straw with fungal cellulase. World J Microbiol Biotechnol 32:186

    CrossRef  PubMed  CAS  Google Scholar 

  • Janus D, Hoff B, Kück U (2009) Evidence for Dicer-dependent RNA interference in the industrial penicillin producer Penicillium chrysogenum. Microbiology 155:3946–3956

    CrossRef  PubMed  CAS  Google Scholar 

  • Kanna M, Yano S, Inoue H, Fujii T, Sawayama S (2011) Enhancement of β-xylosidase productivity in cellulase producing fungus Acremonium cellulolyticus. AMB Express 1:15

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Kansarn S, Matsushita N, Kono T, Okada G (2000a) Purification and characterization of an endo-cellulase from Acremonium cellulolyticus. J Appl Glycosci 47:177–186

    CrossRef  CAS  Google Scholar 

  • Kansarn S, Nihira T, Hashimoto E, Suzuki M, Kono T, Okada G (2000b) Purification and properties of two endo-cellulases from Acremonium cellulolyticus. J Appl Glycosci 47:293–302

    CrossRef  CAS  Google Scholar 

  • Kataoka M, Akita F, Maeno Y, Inoue B, Inoue H, Ishikawa K (2014) Crystal structure of Talaromyces cellulolyticus (formerly known as Acremonium cellulolyticus) GH family 11 xylanase. Appl Biochem Biotechnol 174:1599–1612

    Google Scholar 

  • Kishishita S, Yoshimi M, Fujii T, Taylor LE II, Decker SR, Ishikawa K, Inoue H (2014) Cellulose-inducible xylanase Xyl10A from Acremonium cellulolyticus: purification, cloning and homologous expression. Protein Expr Purif 94:40–45

    CrossRef  PubMed  CAS  Google Scholar 

  • Kishishita S, Fujii T, Ishikawa K (2015) Heterologous expression of hyperthermophilic cellulases of archaea Pyrococcus sp. by fungus Talaromyces cellulolyticus. J Ind Microbiol Biotechnol 42:137–141

    CrossRef  PubMed  CAS  Google Scholar 

  • Li D, Sirakova T, Rogers L, Ettinger WF, Kolattukudy PE (2002) Regulation of constitutively expressed and induced cutinase genes by different zinc finger transcription factors in Fusarium solani f. sp. pisi (Nectria haematococca). J Biol Chem 277:7905–7912

    CrossRef  PubMed  CAS  Google Scholar 

  • Liu H, Wang P, Gong G, Wang L, Zhao G, Zheng Z (2013a) Morphology engineering of Penicillium chrysogenum by RNA silencing of chitin synthase gene. Biotechnol Lett 35:423–429

    CrossRef  PubMed  CAS  Google Scholar 

  • Liu G, Zhang L, Wei X, Zou G, Qin Y, Ma L, Li J, Zheng H, Wang S, Wang C, Xun L, Zhao GP, Zhou Z, Qu Y (2013b) Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS One 8:e55185

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu G, Zhang J, Bao J (2016) Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling. Bioprocess Biosyst Eng 39:133–140

    CrossRef  PubMed  CAS  Google Scholar 

  • Mandel M, Weber J, Parizek R (1971) Enhanced cellulase production by a mutant of Trichoderma viride. Appl Microbiol 21:152–154

    Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560

    CrossRef  CAS  PubMed  Google Scholar 

  • Meyer AS, Dam BR, Laerke HN (2009) Enzymatic solubilization of a pectinaceous dietary fiber fraction from potato pulp: optimization of the fiber extraction process. Biochem Eng J 43:106–112

    CrossRef  CAS  Google Scholar 

  • Midou N, Sumida N, Okakura K, Murakami K, Yamanobe T (2001) Japanese patent, 17180

    Google Scholar 

  • Mitsuishi Y, Yamanobe T, Yagisawa M, Takasaki Y (1987) Purification and properties of thermostable xylanases from mesophilic fungus strain Y-94. Agric Biol Chem 51:3207–3213

    CAS  Google Scholar 

  • Montenecourt BS (1983) Trichoderma reesei cellulases. Trends Biotechnol 1:156–161

    CrossRef  CAS  Google Scholar 

  • Nielsen ML, Isbrandt T, Rasmussen KB, Thrane U, Hoof JB, Larsen TO, Mortensen UH (2017) Genes linked to production of secondary metabolites in Talaromyces atroroseus revealed using CRISPR-Cas9. PLoS One 12:e0169712. http://sci-hub.tw/10.1371/journal.pone.0169712/

  • Nihira T, Kansarn S, Kono T, Okada G (2003) Purification and some properties of a low endo-type cellulase from Acremonium cellulolyticus. J Appl Glycosci 50:21–25

    CrossRef  CAS  Google Scholar 

  • Nihira T, Kansarn S, Kono T, Okada G (2004) A novel concept for the enzymatic degradation mechanism of native cellulose by Acremonium cellulolyticus. In: Omiya K, Sakka K, Karita S, Kimura T, Sakka M, Onishi Y (eds) Biotechnology of lignocellulose degradation and biomass utilization. UNI Publishers Co Ltd, Tokyo, pp 565–575

    Google Scholar 

  • Nojiri C, Fukazawa T, Ohara H, Sumida N, Yamabe H (2011) New α-l-arabinofuranosidase and method for utilizing the same. Japanese patent, 4683531

    Google Scholar 

  • Okuda N, Fujii T, Inoue H, Ishikawa K, Hoshino T (2016) Enhancing cellulase production by overexpression of xylanase regulator protein gene, xlnR, in Talaromyces cellulolyticus cellulase hyperproducing mutant strain. Biosci Biotechnol Biochem 80:2065–2068

    CrossRef  PubMed  CAS  Google Scholar 

  • Park EY, Naruse K, Kato T (2011) Improvement of cellulase production in cultures of Acremonium cellulolyticus using pretreated waste milk pack with cellulase targeting for biorefinery. Bioresour Technol 102:6120–6127

    CrossRef  PubMed  CAS  Google Scholar 

  • Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30 – thirty years of strain improvement. Microbiology 158:58–68

    CrossRef  PubMed  CAS  Google Scholar 

  • Pohl C, Kiel JA, Driessen AJ, Bovenberg RA, Nygård Y (2016) CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth Biol 5:754–764

    CrossRef  PubMed  CAS  Google Scholar 

  • Prasetyo J, Sumita S, Okuda N, Park EY (2010) Response of cellulase activity in pH-controlled cultures of the filamentous fungus Acremonium cellulolyticus. Appl Biochem Biotechnol 162:52–61

    CrossRef  PubMed  CAS  Google Scholar 

  • Prasetyo J, Zhu J, Kato T, Park EY (2011) Efficient production of cellulase in the culture of Acremonium cellulolyticus using untreated waste paper sludge. Biotechnol Prog 27:104–110

    CrossRef  PubMed  CAS  Google Scholar 

  • Ryu DDY, Mandels M (1980) Cellulases – biosynthesis and applications. Enzym Microb Technol 2:91–102

    CrossRef  CAS  Google Scholar 

  • Salame TM, Ziv C, Hadar Y, Yarden O (2011) RNAi as a potential tool for biotechnological applications in fungi. Appl Microbiol Biotechnol 89:501–512

    CrossRef  PubMed  CAS  Google Scholar 

  • Saloheimo M, Pakula TM (2012) The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology 158:46–57

    CrossRef  PubMed  CAS  Google Scholar 

  • Stricker A, Grosstessner-Hain K, Würleitner E, Mach R (2006) Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and d-xylose metabolism in Hypocrea jecorina. Eukaryot Cell 5:2128–2137

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun J, Li X, Feng P, Zhang J, Xie Z, Song E, Xi L (2014) RNAi-mediated silencing of fungal acuD gene attenuates the virulence of Penicillium marneffei. Med Mycol 52:167–178

    CrossRef  PubMed  CAS  Google Scholar 

  • Tani S, Tsuji A, Kunitake E, Sumitani J, Kawaguchi T (2013) Reversible impairment of the ku80 gene by a recyclable marker in Aspergillus aculeatus. AMB Express 3:4

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Tomoda Y, Ohmomo S, Tanaka O, Kitamoto H, Kono T, Tanno Y (1996) Effect of cellulase preparation originated from Acremonium cellulolyticus Y-94 on alfalfa silage fermentation. Grassl Sci 42:155–158

    CAS  Google Scholar 

  • Ullán RV, Godio RP, Teijeira F, Vaca I, García-Estrada C, Feltrer R, Kosalkova K, Martín JF (2008) RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: validation studies using β-lactam genes expression. J Microbiol Methods 75:209–218

    CrossRef  PubMed  CAS  Google Scholar 

  • van Peij N, Gielkens M, de Vries R, Visser J, de Graaff L (1998) The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl Environ Microbiol 64:3615–3619

    PubMed  PubMed Central  Google Scholar 

  • Watanabe M, Inoue H, Inoue B, Yoshimi M, Fujii T, Ishikawa K (2014) Xylanase (GH11) from Acremonium cellulolyticus: homologous expression and characterization. AMB Express 4:27

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Watanabe M, Yoshida E, Fukada H, Inoue H, Tokura M, Ishikawa K (2015a) Characterization of a feruloyl esterase B from Talaromyces cellulolyticus. Biosci Biotechnol Biochem 79:1845–1851

    CrossRef  PubMed  CAS  Google Scholar 

  • Watanabe M, Fukada H, Inoue H, Ishikawa K (2015b) Crystal structure of an acetylesterase from Talaromyces cellulolyticus and the importance of a disulfide bond near the active site. FEBS Lett 589:1200–1206

    CrossRef  PubMed  CAS  Google Scholar 

  • Wen Z, Liao W, Chen S (2005) Production of cellulase/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochem 40:3087–3094

    CrossRef  CAS  Google Scholar 

  • Yamanobe T, Mitsuishi Y (1989) Purification and properties of β-glucosidase from fungal strain Y-94. Agric Biol Chem 53:3359–3360

    CAS  Google Scholar 

  • Yamanobe T, Mitsuishi Y (1990) Some enzymatic properties of endo-l, 4-β-glucanase components from fungal strain Y-94. Agric Biol Chem 54:309–317

    CAS  Google Scholar 

  • Yamanobe T, Mitsuishi Y, Takasaki Y (1984) Japanese patent, 1317660

    Google Scholar 

  • Yamanobe T, Mitsuishi Y, Takasaki Y (1985) Method for manufacture of cellulase. US patent, 4562150

    Google Scholar 

  • Yamanobe T, Mitsuishi Y, Takasaki Y (1986) Japanese patent, 1504657

    Google Scholar 

  • Yamanobe T, Mitsuishi Y, Takasaki Y (1987) Isolation of a cellulolytic enzyme producing microorganism, culture conditions and some propertied of the enzymes. Agric Biol Chem 51:67–74

    Google Scholar 

  • Yamanobe T, Mitsuishi Y, Yagisawa M (1988) Purification and Some properties of a microcrystalline cellulose-hydrolyzing enzyme (Avicelase II) from fungal strain Y-94. Agric Biol Chem 52:2493–2501

    CAS  Google Scholar 

  • Yamanobe T, Okuda N, Oouchi K, Suzuki K (2001) Japanese patent, 4025848

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroyuki Inoue or Shigeki Sawayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Fujii, T., Inoue, H., Yano, S., Sawayama, S. (2018). Strain Improvement for Industrial Production of Lignocellulolytic Enzyme by Talaromyces cellulolyticus . In: Fang, X., Qu, Y. (eds) Fungal Cellulolytic Enzymes. Springer, Singapore. https://doi.org/10.1007/978-981-13-0749-2_7

Download citation