Skip to main content

Functional Characterization of Non-coding RNAs Through Genomic Data Fusion

  • Chapter
  • First Online:
Non-coding RNAs in Complex Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1094))

  • 863 Accesses

Abstract

Acting as a class of regulators of gene expression, miRNAs play crucial roles in various biological processes, such as cell proliferation, differentiation, and apoptosis. Increasing evidence indicates that dysregulation of miRNA expression and function is related to the pathogenesis of many human diseases. Here, we applied an integration strategy to identify conserved miRNA co-expression relationships and constructed a miRNA co-expression network based on human and mouse miRNA expression data. We performed large-scale bioinformatics analyses of conserved miRNA co-expression relationships and their functional links and confirmed that these conserved co-expressed miRNA relationships in the network tend to be functionally relevant. Co-expressed miRNA pairs regulated by common TFs are significantly enriched within the same miRNA clusters and/or miRNA families. Mapping well-known disease miRNAs to the network, we identified three miRNA sub-networks that are highly related to cancer risk. Furthermore, we observed that these conserved co-expressed miRNA sub-networks cooperatively regulate cancer-related functions through synergistically repressing crucial components of these processes. Our results suggest that co-expressed miRNAs assist to drive the initiation and progression of cancer in a cooperative manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  2. Schetter AJ, Leung SY, Sohn JJ et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Ritchie W, Rajasekhar M, Flamant S et al (2009) Conserved expression patterns predict microRNA targets. PLoS Comput Biol 5:e1000513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Volinia S, Galasso M, Costinean S et al (2010) Reprogramming of miRNA networks in cancer and leukemia. Genome Res 20:589–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miska EA, Alvarez-Saavedra E, Abbott AL et al (2007) Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genetics 3:e215

    Google Scholar 

  6. Alvarez-Saavedra E, Horvitz HR (2010) Many families of C. elegans microRNAs are not essential for development or viability. Curr Biol: CB 20:367–373

    Article  CAS  PubMed  Google Scholar 

  7. Hashimi ST, Fulcher JA, Chang MH et al (2009) MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood 114:404–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463:621–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoo AS, Staahl BT, Chen L et al (2009) MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460:642–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17:193–199

    Article  CAS  PubMed  Google Scholar 

  11. Georges SA, Biery MC, Kim SY et al (2008) Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215. Cancer Res 68:10105–10112

    Article  CAS  PubMed  Google Scholar 

  12. Kim YK, Yu J, Han TS et al (2009) Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 37:1672–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsuchiya S, Oku M, Imanaka Y et al (2009) MicroRNA-338-3p and microRNA-451 contribute to the formation of basolateral polarity in epithelial cells. Nucleic Acids Res 37:3821–3827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yoon S, De Micheli G (2005) Prediction of regulatory modules comprising microRNAs and target genes. Bioinformatics (Oxford, England) 21(Suppl 2):93–100

    Article  Google Scholar 

  15. Joung JG, Hwang KB, Nam JW et al (2007) Discovery of microRNA-mRNA modules via population-based probabilistic learning. Bioinformatics (Oxford, England) 23:1141–1147

    Article  CAS  Google Scholar 

  16. Gusev Y, Schmittgen TD, Lerner M et al (2007) Computational analysis of biological functions and pathways collectively targeted by co-expressed microRNAs in cancer. BMC Bioinformatics 8(Suppl 7):S16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Antonov AV, Dietmann S, Wong P et al (2009) GeneSet2miRNA: finding the signature of cooperative miRNA activities in the gene lists. Nucleic Acids Res 37:W323–W328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tran DH, Satou K, Ho TB (2008) Finding microRNA regulatory modules in human genome using rule induction. BMC Bioinformatics 9(Suppl 12):S5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu B, Liu L, Tsykin A et al (2010) Identifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocation. Bioinformatics (Oxford, England) 26:3105–3111

    Article  CAS  Google Scholar 

  20. Xu J, Li CX, Li YS et al (2011) MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res 39:825–836

    Article  CAS  PubMed  Google Scholar 

  21. Gautier L, Cope L, Bolstad BM et al (2004) Affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics (Oxford, England) 20:307–315

    Article  CAS  Google Scholar 

  22. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157

    Article  CAS  PubMed  Google Scholar 

  23. Han J, Lee Y, Yeom KH et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    Article  CAS  PubMed  Google Scholar 

  24. Karolchik D, Hinrichs AS, Furey TS et al (2004) The UCSC Table Browser data retrieval tool. Nucleic Acids Res 32:D493–D496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stuart JM, Segal E, Koller D et al (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302:249–255

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Lu M, Qiu C et al (2010) TransmiR: a transcription factor-microRNA regulation database. Nucleic Acids Res 38:D119–D122

    Article  CAS  PubMed  Google Scholar 

  27. Grimson A, Farh KK, Johnston WK et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang Q, Wang Y, Hao Y et al (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98–D104

    Article  CAS  PubMed  Google Scholar 

  29. Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics (Oxford, England) 23:257–258

    Article  CAS  Google Scholar 

  30. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA (New York, NY) 11:241–247

    Article  CAS  Google Scholar 

  31. Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease. Cell 133:217–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li Y, Tan W, Neo TW et al (2009) Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci 100:1234–1242

    Article  CAS  PubMed  Google Scholar 

  33. Ventura A, Young AG, Winslow MM et al (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo CJ, Pan Q, Li DG et al (2009) miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: An essential role for apoptosis. J Hepatol 50:766–778

    Article  CAS  PubMed  Google Scholar 

  35. Li D, Zhao Y, Liu C et al (2011) Analysis of MiR-195 and MiR-497 expression, regulation and role in breast cancer. Clin Cancer Res: An Off J Am Assoc Cancer Res 17:1722–1730

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiao, Y., Yan, M., Deng, C., Zhao, H. (2018). Functional Characterization of Non-coding RNAs Through Genomic Data Fusion. In: Li, X., Xu, J., Xiao, Y., Ning, S., Zhang, Y. (eds) Non-coding RNAs in Complex Diseases. Advances in Experimental Medicine and Biology, vol 1094. Springer, Singapore. https://doi.org/10.1007/978-981-13-0719-5_3

Download citation

Publish with us

Policies and ethics