Skip to main content

A Futuristic Deep Learning Framework Approach for Land Use-Land Cover Classification Using Remote Sensing Imagery

  • Conference paper
  • First Online:
Advanced Computing and Communication Technologies

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 702))

Abstract

Our aim is to propose a new deep learning framework approach which uses an ensemble of convolutional neural network (CNN) for land use-land cover mapping. Every CNN layer was fed with diverse combination of multispectral and geospatial satellite bands provided by Sentinel 2 satellite imagery (spatial resolution of 10 m), topographic and derived texture parameters, of New Delhi (28.6139° N, 77.2090° E) region, India. Several classes were identified like forest, parking, residential areas, slums, wasteland, water bodies. It was observed that our proposed framework outperformed with classification accuracy of 89.43%, compared to the current state-of-the-art algorithms (support vector machine (SVM), K-nearest neighbor (KNN), and random forest (RF)). Accuracy assessment was done by means of following statistic measures (precision, recall, specificity, and area under curve (AUC)) and receiver operating characteristic (ROC) curve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pesaresi, M., Gerhardinger, A.: Improved textural built-up presence index for automatic recognition of human settlements in arid regions with scattered vegetation. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 4(1), 16–26 (2011)

    Article  Google Scholar 

  2. Rizvi, I.A., Mohan, B.K.: Object-based image analysis of high-resolution satellite images using modified cloud basis function neural network and probabilistic relaxation labeling process. IEEE Trans. Geosci. Remote Sens. 49(12), 4815–4820 (2011)

    Article  Google Scholar 

  3. Gaetano, R., Masi, G., Poggi, G., Verdoliva, L., Scarpa, G.: Marker-controlled watershed-based segmentation of multiresolution remote sensing images. IEEE Trans. Geosci. Remote Sens. 53(6), 2987–3004 (2015)

    Article  Google Scholar 

  4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. (2012)

    Google Scholar 

  5. Midhun, M.E., Nair, S.R., Prabhakar, V.T., Kumar, S.S.: Deep model for classification of hyperspectral image using restricted Boltzmann machine. In: Proceedings of the 2014 International Conference on Interdisciplinary Advances in Applied Computing. ACM (2014)

    Google Scholar 

  6. Chen, Y., Zhao, X., Jia, X.: Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8(6), 2381–2392 (2015)

    Article  Google Scholar 

  7. Li, T., Zhang, J., Zhang, Y.: Classification of hyperspectral image based on deep belief networks. In: IEEE International Conference on Image Processing (ICIP), IEEE, 2014

    Google Scholar 

  8. Castelluccio, M., Poggi, G., Sansone, C., Verdoliva, L.: Land use classification in remote sensing images by convolutional neural networks. (2015). arXiv https://arxiv.org/pdf/1508.00092

  9. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  10. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  11. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  12. Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM (2010)

    Google Scholar 

  13. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, CVPR 2005. IEEE (2005)

    Google Scholar 

  14. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2. IEEE (2006)

    Google Scholar 

  15. Khatami, R., Mountrakis, G., Stehman, S.V.: A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: general guidelines for practitioners and future research. Remote Sens. Environ. 177, 89–100 (2016)

    Article  Google Scholar 

  16. Gislason, P.O., Benediktsson, J.A., Sveinsson, J.R.: Random forests for land cover classification. Pattern Recogn. Lett. 27(4), 294–300 (2006)

    Article  Google Scholar 

  17. Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7(6), 2094–2107 (2014)

    Article  Google Scholar 

  18. Zhao, W., Du, S.: Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogrammetry Remote Sens. 113, 155–165 (2016)

    Article  Google Scholar 

  19. Kussul, N.N., Lavreniuk, N.S., Shelestov, A.Y., Yailymov, B.Y., Butko, I.N.: Land cover changes analysis based on deep machine learning technique. J. Autom. Inf. Sci. 48(5) (2016)

    Article  Google Scholar 

  20. Kussul, N., Shelestov, A., Basarab, R., Skakun, S., Kussul, O., Lavrenyuk, M.: Geospatial intelligence and data fusion techniques for sustainable development problems. In: Proceedings of ICTERI, pp. 196–203 (2015)

    Google Scholar 

  21. Ding, J., Chen, B., Liu, H., Huang, M.: Convolutional neural network with data augmentation for SAR target recognition. IEEE Geosci. Remote Sens. Lett. 13(3), 364–368 (2016)

    Google Scholar 

  22. Huang, F.J., LeCun, Y.: Large-scale learning with svm and convolutional for generic object categorization. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1. IEEE (2006)

    Google Scholar 

  23. Ishii, T., Nakamura, R., Nakada, H., Mochizuki, Y., Ishikawa, H.: Surface object recognition with CNN and SVM in Landsat 8 images. In: 14th IAPR International Conference on Machine Vision Applications (MVA). IEEE (2015)

    Google Scholar 

  24. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  25. Mnih, V., Hinton, G.E.: Learning to detect roads in high-resolution aerial images. In: Computer Vision–ECCV 2010, pp. 210–223 (2010)

    Chapter  Google Scholar 

  26. Geng, J., Fan, J., Wang, H., Ma, X., Li, B., Chen, F.: High-resolution SAR image classification via deep convolutional autoencoders. IEEE Geosci. Remote Sens. Lett. 12(11), 2351–2355 (2015)

    Article  Google Scholar 

  27. Liang, H., Li, Q.: Hyperspectral imagery classification using sparse representations of convolutional neural network features. Remote Sens. 8(2), 99 (2016)

    Article  Google Scholar 

  28. Lyu, H., Lu, H., Mou, L.: Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote Sens. 8(6), 506 (2016)

    Article  Google Scholar 

  29. Ouyang, W., Wang, X.: Joint deep learning for pedestrian detection. In: Proceedings of the IEEE International Conference on Computer Vision (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepankar Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nijhawan, R., Joshi, D., Narang, N., Mittal, A., Mittal, A. (2019). A Futuristic Deep Learning Framework Approach for Land Use-Land Cover Classification Using Remote Sensing Imagery. In: Mandal, J., Bhattacharyya, D., Auluck, N. (eds) Advanced Computing and Communication Technologies. Advances in Intelligent Systems and Computing, vol 702. Springer, Singapore. https://doi.org/10.1007/978-981-13-0680-8_9

Download citation

Publish with us

Policies and ethics