Advertisement

Bioinformatics of Embryonic Exposures: Lipid Metabolism and Gender as Biomedical Variables

  • K. K. LinaskEmail author
Chapter
Part of the Translational Bioinformatics book series (TRBIO, volume 14)

Abstract

Early pregnancy in the first month is a highly vulnerable window for adverse effects of environmental exposures on the developing embryo. We have demonstrated that three seemingly disparate factors, lithium, homocysteine or alcohol, induce cardiac outflow tract defects, when a single exposure occurs during gastrulation stages. Severity of defects relates to dose, timing of exposure during gastrulation, and gender of the embryo. We sought to define what common process in the developing heart may be altered by maternal lithium and homocysteine exposure and is protected by folic acid dietary supplementation. Using microarray studies and bioinformatics analyses, lipid metabolism was predominantly altered with male embryos displaying greater misexpression of genes than the female. Both placental and cardiac lipid metabolism was altered in a sex-dependent manner.

References

  1. Altmae S, Segura MT, Esteban FJ, Bartel S, Brandi P, Irmler M, Beckers J, Demmelmair H, Lopez-Sabater C, Koletzko B, Krauss-Etschmann S, Campoy C. Maternal pre-pregnancy obesity is associated with altered placental transcriptome. Plos One. 2017;12:e0169223.  https://doi.org/10.1371/Journal.Pone.0169223. Ecollection 0162017CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andrikopoulos S, Massa CM, Aston-Mourney K, Funkat A, Fam BC, Hull RL, Kahn SE, Proietto J. Differential effect of inbred mouse strain (C57bl/6, Dba/2, 129t2) on insulin secretory function in response to a high fat diet. J Endocrinol. 2005;187:45–53.CrossRefPubMedGoogle Scholar
  3. Aye IL, Lager S, Ramirez VI, Gaccioli F, Dudley DJ, Jansson T, Powell TL. Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways. Biol Reprod. 2014;90:129.  https://doi.org/10.1095/Biolreprod.1113.116186. Epub 112014 Apr 116123CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baardman ME, Kerstjens-Frederikse WS, Berger RM, Bakker MK, Hofstra RM, Plosch T. The role of maternal-fetal cholesterol transport in early fetal life: current insights. Biol Reprod. 2013;88:24.  https://doi.org/10.1095/Biolreprod.1112.102442. Print 102013 JanCrossRefPubMedGoogle Scholar
  5. Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261:412–7.CrossRefPubMedGoogle Scholar
  6. Barker DJ. Human growth and cardiovascular disease. Nestle Nutr Workshop Ser Pediatr Program. 2008;61:21–38.CrossRefPubMedGoogle Scholar
  7. Barker DJ, Bagby SP, Hanson MA. Mechanisms of disease: in utero programming in the pathogenesis of hypertension. Nat Clin Pract Nephrol. 2006;2:700–7.CrossRefPubMedGoogle Scholar
  8. Barnabei MS, Palpant NJ, Metzger JM. Influence of genetic background on ex vivo and in vivo cardiac function in several commonly used inbred mouse strains. Physiol Genomics. 2010;42a:103–13.  https://doi.org/10.1152/Physiolgenomics.00071.02010. Epub 02010 Jul 00013CrossRefPubMedPubMedCentralGoogle Scholar
  9. Blüthgen N, Brand K, Cajavec B, Swat M, Herzel H, Beule D. Biological profiling of gene groups utilizing gene ontology. Genome Inform. 2005;16:106–15.PubMedGoogle Scholar
  10. Boot MJ, Gittenberger-De Groot AC, Van Iperen L, Hierck BP, Poelmann RE. Spatiotemporally separated cardiac neural crest subpopulations that target the outflow tract septum and pharyngeal arch arteries. Anat Rec A Discov Mol Cell Evol Biol. 2003;275:1009–18.CrossRefPubMedGoogle Scholar
  11. Bourc’his D, Proudhon C. Sexual dimorphism in parental imprint ontogeny and contribution to embryonic development. Mol Cell Endocrinol. 2008;282:87–94.CrossRefPubMedGoogle Scholar
  12. Calabuig-Navarro V, Haghiac M, Minium J, Glazebrook P, Ranasinghe GC, Hoppel C, Hauguel De-Mouzon S, Catalano P, O'tierney-Ginn P. Effect of maternal obesity on placental lipid metabolism. Endocrinology. 2017;23:2017–00152.Google Scholar
  13. Chen J, Han M, Manisastry SM, Trotta P, Serrano MC, Huhta JC, Linask KK. Molecular effects of Lithium exposure during mouse and Chick gastrulation and subsequent valve dysmorphogenesis. Birth Defects Res A Clin Mol Teratol. 2008;82:508–18.CrossRefPubMedGoogle Scholar
  14. Czeizel AE, Dudas I, Vereczkey A, Banhidy F. Folate deficiency and folic acid supplementation: the prevention of neural-tube defects and congenital heart defects. Nutrients. 2013;5:4760–75.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Duan Y, Sun F, Que S, Li Y, Yang S, Liu G. Prepregnancy maternal diabetes combined with obesity impairs placental mitochondrial function involving Nrf2/are pathway and detrimentally alters metabolism of offspring. Obes Res Clin Pract. 2017;19:30002–9.Google Scholar
  16. Ferencz C. A case-control study of cardiovascular malformations in Liveborn infants: the morphogenetic relevance of epidemiologic findings. In: Clark EB, Takao A, editors. Developmental cardiology: morphogenesis and function. Mount Kisco: Futura Publishing Co., Inc.; 1990. p. 523–39.Google Scholar
  17. Fielding CJ, Fielding PE. Membrane cholesterol and the regulation of signal transduction. Biochem Soc Trans. 2004;32:65–9.CrossRefPubMedGoogle Scholar
  18. Funkat A, Massa CM, Jovanovska V, Proietto J, Andrikopoulos S. Metabolic adaptations of three inbred strains of mice (C57bl/6, Dba/2, and 129t2) in response to a high-fat diet. J Nutr. 2004;134:3264–9.CrossRefPubMedGoogle Scholar
  19. Gabory A, Attig L, Junien C. Sexual dimorphism in environmental epigenetic programming. Mol Cell Endocrinol. 2009;304:8–18.CrossRefPubMedGoogle Scholar
  20. Grewal J, Carmichael SL, Ma C, Lammer EJ, Shaw GM. Maternal Periconceptional smoking and alcohol consumption and risk for select congenital anomalies. Birth Defects Res A Clin Mol Teratol. 2008;82:519–26.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gui YH, Linask KK, Khowsathit P, Huhta JC. Doppler echocardiography of normal and abnormal embryonic mouse heart. Ped Res. 1996;40:633–42.CrossRefGoogle Scholar
  22. Gurvitz M, Stout K. Ebstein’s anomaly of the tricuspid valve. Curr Cardiol Rep. 2007;9:336–42.CrossRefPubMedGoogle Scholar
  23. Han M, Trotta P, Coleman C, Linask KK. Mct-4, A511/Basigin and Ef5 expression patterns during early chick cardiomyogenesis indicate cardiac cell differentiation occurs in a hypoxic environment. Dev Dyn. 2006;235:124–31.CrossRefPubMedGoogle Scholar
  24. Han M, Serrano MC, Lastra-Vicente R, Brinez P, Acharya G, Huhta JC, Chen R, Linask KK. Folate rescues Lithium-, homocysteine- and Wnt3a-induced vertebrate cardiac anomalies. Dis Model Mech. 2009;2:467–78.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Han M, Neves AL, Serrano M, Brinez P, Huhta JC, Acharya G, Linask KK. Effects of alcohol, Lithium, and homocysteine on nonmuscle myosin-ii in the mouse placenta and human trophoblasts. Am J Obstet Gynecol. 2012;207(140):E147–19.Google Scholar
  26. Han M, Evsikov AV, Zhang L, Lastra-Vicente R, Linask KK. Embryonic exposures of lithium and homocysteine and folate protection affect lipid metabolism during mouse cardiogenesis and placentation. Reprod Toxicol. 2016;61:82–96.  https://doi.org/10.1016/J.Reprotox.2016.1003.1039. Epub 2016 Mar 1015CrossRefPubMedGoogle Scholar
  27. Herrera E, Amusquivar E, Lopez-Soldado I, Ortega H. Maternal lipid metabolism and placental lipid transfer. Horm Res. 2006a;65:59–64. Epub 2006 Apr 2010PubMedGoogle Scholar
  28. Herrera E, Lopez-Soldado I, Limones M, Amusquivar E, Ramos MP. Lipid metabolism during the perinatal phase, and its implications on postnatal development. Int J Vitam Nutr Res. 2006b;76:216–24.CrossRefPubMedGoogle Scholar
  29. Hirschmugl B, Desoye G, Catalano P, Klymiuk I, Scharnagl H, Payr S, Kitzinger E, Schliefsteiner C, Lang U, Wadsack C, Hauguel-De Mouzon S. Maternal obesity modulates intracellular lipid turnover in the human term placenta. Int J Obes (Lond). 2017;41:317–23.  https://doi.org/10.1038/Ijo.2016.1188. Epub 2016 Oct 1026CrossRefGoogle Scholar
  30. Hogers B, Deruiter M, Baasten A, Gittenberger-De Groot A, Poelmann R. Intracardiac blood flow patterns related to the yolk sac circulation of the Chick embryo. Circ Res. 1995;76:871–7.CrossRefPubMedGoogle Scholar
  31. Hogers B, Deruiter MC, Gittenberger-De Groot AC, Poelmann RE. Extraembryonic venous obstructions lead to cardiovascular malformations and can be Embryolethal. Cardiovasc Res. 1999;41:87–99.CrossRefPubMedGoogle Scholar
  32. Hom J, Quintanilla R, Hoffman D, De Mesy Bentley K, Molkentin JD, Shey-Shing S, Porter GA. The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev Cell. 2011;21:469–78.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hubbell E, Liu W, Mei R. Robust estimators for expression analysis. Bioinformatics. 2002;18:1585–92.CrossRefPubMedGoogle Scholar
  34. Huhta JC, Linask K. When should we prescribe high-dose folic acid to prevent congenital heart defects? Curr Opin Cardiol. 2015;30:125–31.CrossRefPubMedGoogle Scholar
  35. Huhta JC, Linask K, Bailey L. Recent advances in the prevention of congenital heart disease. Curr Opin Pediatr. 2006;18:484–9.CrossRefPubMedGoogle Scholar
  36. Klein PS, Melton DA. A molecular mechanism for the effect of Lithium on development. Proc Natl Acad Sci U S A. 1996;93:8455–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Linask KK. The heart-placenta Axis in the first month of pregnancy: induction and prevention of cardiovascular birth defects. J Pregnancy. 2013;2013:320413.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Linask KK, Han M. Acute alcohol exposure during mouse gastrulation alters lipid metabolism in placental and heart development: folate prevention. Birth Defects Res A Clin Mol Teratol. 2016;106:749–60.  https://doi.org/10.1002/Bdra.23526. Epub 22016 Jun 23514CrossRefPubMedPubMedCentralGoogle Scholar
  39. Linask KK, Han M, Bravo-Valenzuela NJ. Changes in vitelline and utero-placental hemodynamics: implications for cardiovascular development. Front Physiol. 2014;5:390. Ecollection 2014CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lindinger A, Schwedler G, Hense HW. Prevalence of congenital heart defects in newborns in Germany: results of the first registration year of the Pan study (July 2006 to June 2007). Klinische Padiatrie. 2010;222:321–6.CrossRefPubMedGoogle Scholar
  41. Liu WM, Mei R, Di X, Ryder TB, Hubbell E, Dee S, Webster TA, Harrington CA, Ho MH, Baid J, Smeekens SP. Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics. 2002;18:1593–9.CrossRefGoogle Scholar
  42. Loffredo CA. Epidemiology of cardiovascular malformations: prevalence and risk factors. Am J Med Genet. 2000;97:319–25.CrossRefPubMedGoogle Scholar
  43. Manisastry SM, Han M, Linask KK. Early temporal-specific responses and differential sensitivity to Lithium and Wnt-3a exposure during heart development. Dev Dyn. 2006;235:2160–74.CrossRefPubMedGoogle Scholar
  44. Marino BS, Lipkin PH, Newburger JW, Peacock G, Gerdes M, Gaynor JW, Mussatto KA, Uzark K, Goldberg CS, Johnson WH Jr, Li J, Smith SE, Bellinger DC, Mahle WT. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation. 2012;126:1143–72.CrossRefPubMedGoogle Scholar
  45. Mcgrath KE, Koniski AD, Malik J, Palis J. Circulation is established in a stepwise pattern in the mammalian embryo. Blood. 2003;101:1669–75.CrossRefPubMedGoogle Scholar
  46. Myatt L, Maloyan A. Obesity and placental function. Semin Reprod Med. 2016;34:42–9.CrossRefPubMedGoogle Scholar
  47. Osol G, Mandala M. Maternal uterine vascular remodeling during pregnancy. Physiology (Bethesda). 2009;24:58–71.Google Scholar
  48. Pecks U, Rath W, Maass N, Berger B, Lueg I, Farrokh A, Farrokh S, Eckmann-Scholz C. Fetal gender and gestational age differentially affect Pcsk9 levels in intrauterine growth restriction. Lipids Health Dis. 2016;15:193.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ptitsyn A. Computational analysis of gene expression space associated with metastatic cancer. Bmc Bioinformatics. 2009;10:S6.  https://doi.org/10.1186/1471-2105-1110-S1111-S1186.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Rai A, Cross JC. Development of the hemochorial maternal vascular spaces in the placenta through endothelial and Vasculogenic mimicry. Dev Biol. 2014;387:131–41.  https://doi.org/10.1016/J.Ydbio.2014.1001.1015. Epub 2014 Jan 1028CrossRefPubMedGoogle Scholar
  51. Richardson JE, Bult CJ. Visual annotation display (Vlad): a tool for finding functional themes in lists of genes. Mamm Genome. 2015;26:567–73.  https://doi.org/10.1007/S00335-00015-09570-00332. Epub 02015 Jun 00336CrossRefPubMedPubMedCentralGoogle Scholar
  52. Rosenquist TH, Ratashak SA, Selhub J. Homocysteine induces congenital defects of the heart and neural tube: effect of folic acid. Proc Natl Acad Sci U S A. 1996;93:15227–32.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ruiz-Palacios M, Prieto-Sanchez MT, Ruiz-Alcaraz AJ, Blanco-Carnero JE, Sanchez-Campillo M, Parrilla JJ, Larque E. Insulin treatment may alter fatty acid carriers in placentas from gestational diabetes subjects. Int J Mol Sci. 2017;18(6):E1203.  https://doi.org/10.3390/Ijms18061203.CrossRefPubMedGoogle Scholar
  54. Serrano M, Han M, Brinez P, Linask KK. Fetal alcohol syndrome: cardiac birth defects in mice and prevention with folate. Am J Obstet Gynecol. 2010;203:75 E77–15.CrossRefGoogle Scholar
  55. Smedts HP, Rakhshandehroo M, Verkleij-Hagoort AC, De Vries JH, Ottenkamp J, Steegers EA, Steegers-Theunissen RP. Maternal intake of fat, riboflavin and nicotinamide and the risk of having offspring with congenital heart defects. Eur J Nutr. 2008;47:357–65.CrossRefPubMedGoogle Scholar
  56. Smedts HP, Van Uitert EM, Valkenburg O, Laven JS, Eijkemans MJ, Lindemans J, Steegers EA, Steegers-Theunissen RP. A derangement of the maternal lipid profile is associated with an elevated risk of congenital heart disease in the offspring. Nutr Metab Cardiovasc Dis. 2012;22:477–85.CrossRefPubMedGoogle Scholar
  57. Spiekerkoetter U, Wood PA. Mitochondrial fatty acid oxidation disorders: pathophysiological studies in mouse models. J Inherit Metab Dis. 2010;33:539–46.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tang LS, Wlodarczyk BJ, Santillano DR, Miranda RC, Finnell RH. Developmental consequences of abnormal folate transport during murine heart morphogenesis. Birth Defects Res A Clin Mol Teratol. 2004;70:449–58.CrossRefPubMedGoogle Scholar
  59. Thiam A, Farese RJ, Walther T. The biophysics and cell biology of lipid droplets. Nat Rev. 2013;14:775–86.CrossRefGoogle Scholar
  60. Walker D, Fisher C, Sherman A, Wybrecht B, Kyndely K. Fetal alcohol Spectrum disorders prevention: an exploratory study of Women's use of, attitudes toward, and knowledge about alcohol. J Am Acad Nurse Pract. 2005;17:187–93.CrossRefPubMedGoogle Scholar
  61. Zhang F, Phiel C, Spece L, Gurvich N, Klein P. Inhibitory phosphorylation of glycogen synthase kinase-3 (Gsk-3) in response to Lithium. J Biol Chem. 2003;278:33067–77.CrossRefPubMedGoogle Scholar
  62. Zhao QM, Ma XJ, Jia B, Huang GY. Prevalence of congenital heart disease at live birth: an accurate assessment by echocardiographic screening. Acta Paediatrica (Oslo, Norway: 1992). 2013;102:397–402.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of PediatricsUSF Morsani College of MedicineTampa and St. PetersburgUSA

Personalised recommendations