Advertisement

The Role of Chromosome Deletions in Human Cancers

  • Mei Chen
  • Yi Yang
  • Yu Liu
  • Chong Chen
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1044)

Abstract

Chromosome deletions are a hallmark of human cancers. These chromosome abnormalities have been observed for over than a century and frequently associated with poor prognosis. However, their functions and potential underlying mechanisms remain elusive until recently. Recent technique breakthroughs, including cancer genomics, high throughput library screening and genome editing, opened a new era in the mechanistic studying of chromosome deletions in human cancer. In this chapter, we will focus on the latest studies on the functions of chromosome deletions in human cancers, especially hematopoietic malignancies and try to persuade the readers that these chromosome alterations could play significant roles in the genesis and drug responses of human cancers.

Keywords

Chromosome deletion Human cancer Knudson’s two-hit hypothesis Haploinsufficient tumor suppressor Genome editing 

References

  1. 1.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674.  https://doi.org/10.1016/j.cell.2011.02.013 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hansemann D (1890) Asymmetrical cell division in epithelial cancers and its biological significance. Arch Pathol Anat etc Berl 119:299–326CrossRefGoogle Scholar
  3. 3.
    Hansemann D (1891) Festschr. Rudolf Virchow, von seine Assistenten, Berl:1–12Google Scholar
  4. 4.
    Boveri T (1929) The origin of malignant tumors. Williams and Wilkins, BostonGoogle Scholar
  5. 5.
    Nowell PCH (1960) D.A. a minute chromosome in human chronic granulocytic leukemia. Science 132:1497Google Scholar
  6. 6.
    Shlien A, Malkin D (2009) Copy number variations and cancer. Genome Med 1:62.  https://doi.org/10.1186/gm62 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sherr CJ (2004) Principles of tumor suppression. Cell 116:235–246CrossRefPubMedGoogle Scholar
  8. 8.
    Solimini NL et al (2012) Recurrent hemizygous deletions in cancers may optimize proliferative potential. Science 337:104–109.  https://doi.org/10.1126/science.1219580 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cai Y et al (2016) Loss of chromosome 8p governs tumor progression and drug response by altering lipid metabolism. Cancer Cell 29:751–766.  https://doi.org/10.1016/j.ccell.2016.04.003 CrossRefPubMedGoogle Scholar
  10. 10.
    Liu Y et al (2016) Deletions linked to TP53 loss drive cancer through p53-independent mechanisms. Nature 531:471–475.  https://doi.org/10.1038/nature17157 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kotini AG et al (2015) Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells. Nat Biotechnol 33:646–655.  https://doi.org/10.1038/nbt.3178 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wong JC et al. (2015) Functional evidence implicating chromosome 7q22 haploinsufficiency in myelodysplastic syndrome pathogenesis. Elife 4.  https://doi.org/10.7554/eLife.07839
  13. 13.
    Chen C et al (2014) MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 25:652–665.  https://doi.org/10.1016/j.ccr.2014.03.016 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zender L et al (2008) An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135:852–864.  https://doi.org/10.1016/j.cell.2008.09.061 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mader SS (2007) Biology. 9th edn. McGraw Hill Higher Education, New YorkGoogle Scholar
  16. 16.
    Rowley JDL (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293CrossRefPubMedGoogle Scholar
  17. 17.
    Druker BJ et al (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344:1038–1042.  https://doi.org/10.1056/NEJM200104053441402 CrossRefPubMedGoogle Scholar
  18. 18.
    Druker BJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037.  https://doi.org/10.1056/NEJM200104053441401 CrossRefPubMedGoogle Scholar
  19. 19.
    Caspersson T, Zech L, Johansson C, Modest EJ (1970) Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma 30:215–227CrossRefPubMedGoogle Scholar
  20. 20.
    Speicher MR, Carter NP (2005) The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 6:782–792.  https://doi.org/10.1038/nrg1692 CrossRefPubMedGoogle Scholar
  21. 21.
    Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci U S A 79:4381–4385CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kallioniemi A et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821CrossRefPubMedGoogle Scholar
  23. 23.
    Pinkel D, Albertson DG (2005) Array comparative genomic hybridization and its applications in cancer. Nat Genet 37(Suppl):S11–S17.  https://doi.org/10.1038/ng1569 CrossRefPubMedGoogle Scholar
  24. 24.
    Beroukhim R et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905.  https://doi.org/10.1038/nature08822 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bignell GR et al (2010) Signatures of mutation and selection in the cancer genome. Nature 463:893–898.  https://doi.org/10.1038/nature08768 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11:685–696.  https://doi.org/10.1038/nrg2841 CrossRefPubMedGoogle Scholar
  27. 27.
    Albertson DG, Collins C, McCormick F, Gray JW (2003) Chromosome aberrations in solid tumors. Nat Genet 34:369–376.  https://doi.org/10.1038/ng1215 CrossRefPubMedGoogle Scholar
  28. 28.
    Kenneth Kaushansky ML, Prchal J, Levi MM, Press O, Burns L, Caligiuri M (2015) Williams hematology, 9th edn. McGraw-Hill Education, New YorkGoogle Scholar
  29. 29.
    Neuman WL et al (1992) Chromosomal loss and deletion are the most common mechanisms for loss of heterozygosity from chromosomes 5 and 7 in malignant myeloid disorders. Blood 79:1501–1510PubMedGoogle Scholar
  30. 30.
    Zabarovsky ER, Lerman MI, Minna JD (2002) Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene 21:6915–6935.  https://doi.org/10.1038/sj.onc.1205835 CrossRefPubMedGoogle Scholar
  31. 31.
    Greenberg P et al (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89:2079–2088PubMedGoogle Scholar
  32. 32.
    Nimer SD (2006) Clinical management of myelodysplastic syndromes with interstitial deletion of chromosome 5q. J Clin Oncol 24:2576–2582CrossRefPubMedGoogle Scholar
  33. 33.
    Haase D et al (2007) New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood 110:4385–4395CrossRefPubMedGoogle Scholar
  34. 34.
    Soenen V et al (1998) 17p deletion in acute myeloid leukemia and myelodysplastic syndrome. Analysis of breakpoints and deleted segments by fluorescence in situ. Blood 91:1008–1015PubMedGoogle Scholar
  35. 35.
    Sterkers Y et al (1998) Acute myeloid leukemia and myelodysplastic syndromes following essential thrombocythemia treated with hydroxyurea: high proportion of cases with 17p deletion. Blood 91:616–622PubMedGoogle Scholar
  36. 36.
    Smith SM et al (2003) Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood 102:43–52CrossRefPubMedGoogle Scholar
  37. 37.
    Levine EG et al (1990) Sequential karyotypes in non-Hodgkin lymphoma: their nature and significance. Genes Chromosom Cancer 1:270–280CrossRefPubMedGoogle Scholar
  38. 38.
    Caporaso N et al (2007) Chronic lymphocytic leukaemia genetics overview. Brit J Haematol 139:630–634CrossRefGoogle Scholar
  39. 39.
    Chng W, Glebov O, Bergsagel P, Kuehl W (2007) Genetic events in the pathogenesis of multiple myeloma. Best Pract Res Clin Haematol 20:571–596CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yokota J, Wada M, Shimosato Y, Terada M, Sugimura T (1987) Loss of heterozygosity on chromosomes 3, 13, and 17 in small-cell carcinoma and on chromosome 3 in adenocarcinoma of the lung. Proc Natl Acad Sci 84:9252–9256CrossRefPubMedGoogle Scholar
  41. 41.
    Saito H et al (1993) Detailed deletion mapping of chromosome 17q in ovarian and breast cancers: 2-cM region on 17q21. 3 often and commonly deleted in tumors. Cancer Res 53:3382–3385PubMedGoogle Scholar
  42. 42.
    Emi M et al (1992) Frequent loss of heterozygosity for loci on chromosome 8p in hepatocellular carcinoma, colorectal cancer, and lung cancer. Cancer Res 52:5368–5372PubMedGoogle Scholar
  43. 43.
    Garcia JM et al (1999) Allelic loss of the PTEN region (10q23) in breast carcinomas of poor pathophenotype. Breast Cancer Res Treat 57:237–243CrossRefPubMedGoogle Scholar
  44. 44.
    Van den Berghe H et al (1974) Distinct haematological disorder with deletion of long arm of no. 5 chromosome. Nature 251:437–438CrossRefPubMedGoogle Scholar
  45. 45.
    List A et al (2006) Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med 355:1456–1465.  https://doi.org/10.1056/NEJMoa061292 CrossRefPubMedGoogle Scholar
  46. 46.
    Boultwood J, Pellagatti A, McKenzie AN, Wainscoat JS (2010) Advances in the 5q- syndrome. Blood 116:5803–5811.  https://doi.org/10.1182/blood-2010-04-273771 CrossRefPubMedGoogle Scholar
  47. 47.
    Dastugue N et al (1995) Prognostic significance of karyotype in de novo adult acute myeloid leukemia. The BGMT group. Leukemia 9:1491–1498PubMedGoogle Scholar
  48. 48.
    Qian Z et al (2010) Cytogenetic and genetic pathways in therapy-related acute myeloid leukemia. Chem Biol Interact 184:50–57.  https://doi.org/10.1016/j.cbi.2009.11.025 CrossRefPubMedGoogle Scholar
  49. 49.
    Johnson E, Cotter FE (1997) Monosomy 7 and 7q--associated with myeloid malignancy. Blood Rev 11:46–55CrossRefPubMedGoogle Scholar
  50. 50.
    Jerez A et al (2012) Loss of heterozygosity in 7q myeloid disorders: clinical associations and genomic pathogenesis. Blood 119:6109–6117.  https://doi.org/10.1182/blood-2011-12-397620 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Le Beau MM et al (1996) Cytogenetic and molecular delineation of a region of chromosome 7 commonly deleted in malignant myeloid diseases. Blood 88:1930–1935PubMedPubMedCentralGoogle Scholar
  52. 52.
    Liang H et al (1998) Molecular anatomy of chromosome 7q deletions in myeloid neoplasms: evidence for multiple critical loci. Proc Natl Acad Sci U S A 95:3781–3785CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jary L et al (1997) The 17p-syndrome: a distinct myelodysplastic syndrome entity? Leuk Lymphoma 25:163–168.  https://doi.org/10.3109/10428199709042506 CrossRefPubMedGoogle Scholar
  54. 54.
    Sankar M et al (1998) Identification of a commonly deleted region at 17p13.3 in leukemia and lymphoma associated with 17p abnormality. Leukemia 12:510–516CrossRefPubMedGoogle Scholar
  55. 55.
    Miller LD et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci U S A 102:13550–13555.  https://doi.org/10.1073/pnas.0506230102 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Rowley JD, Le Beau MM (1989) Cytogenetic and molecular analysis of therapy-related leukemia. Ann N Y Acad Sci 567:130–140CrossRefPubMedGoogle Scholar
  57. 57.
    Mermel CH et al (2011) GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 12:R41.  https://doi.org/10.1186/gb-2011-12-4-r41 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68:820–823CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Knudson AG (2001) Two genetic hits (more or less) to cancer. Nat Rev Cancer 1:157–162.  https://doi.org/10.1038/35101031 CrossRefPubMedGoogle Scholar
  60. 60.
    Machiela MJ et al (2016) Mosaic 13q14 deletions in peripheral leukocytes of non-hematologic cancer cases and healthy controls. J Hum Genet 61:411–418.  https://doi.org/10.1038/jhg.2015.166 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Witkiewicz AK, Knudsen KE, Dicker AP, Knudsen ES (2011) The meaning of p16(ink4a) expression in tumors: functional significance, clinical associations and future developments. Cell Cycle 10:2497–2503.  https://doi.org/10.4161/cc.10.15.16776 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Sulong S et al (2009) A comprehensive analysis of the CDKN2A gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy number neutral loss of heterozygosity, and association with specific cytogenetic subgroups. Blood 113:100–107.  https://doi.org/10.1182/blood-2008-07-166801 CrossRefPubMedGoogle Scholar
  63. 63.
    Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9:749–758.  https://doi.org/10.1038/nrc2723 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2:a001008.  https://doi.org/10.1101/cshperspect.a001008 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Varley J, Germline M (2003) TP53 mutations and Li-Fraumeni syndrome. Hum Mutat 21:313–320.  https://doi.org/10.1002/humu.10185 CrossRefPubMedGoogle Scholar
  66. 66.
    Steck PA et al (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356–362.  https://doi.org/10.1038/ng0497-356 CrossRefPubMedGoogle Scholar
  67. 67.
    Costa RM, Silva AJ (2002) Molecular and cellular mechanisms underlying the cognitive deficits associated with neurofibromatosis 1. J Child Neurol 17:622–626; discussion 627–629, 646–651.  https://doi.org/10.1177/088307380201700813 CrossRefPubMedGoogle Scholar
  68. 68.
    Albertsen H et al (1994) Genetic mapping of the BRCA1 region on chromosome 17q21. Am J Hum Genet 54:516–525PubMedPubMedCentralGoogle Scholar
  69. 69.
    Nordstrom-O’Brien M et al (2010) Genetic analysis of von Hippel-Lindau disease. Hum Mutat 31:521–537.  https://doi.org/10.1002/humu.21219 CrossRefPubMedGoogle Scholar
  70. 70.
    Santarosa M, Ashworth A (2004) Haploinsufficiency for tumour suppressor genes: when you don’t need to go all the way. Biochim Biophys Acta 1654:105–122.  https://doi.org/10.1016/j.bbcan.2004.01.001 CrossRefPubMedGoogle Scholar
  71. 71.
    Quon KC, Berns A (2001) Haplo-insufficiency? Let me count the ways. Genes Dev 15:2917–2921.  https://doi.org/10.1101/gad.949001 CrossRefPubMedGoogle Scholar
  72. 72.
    Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ (1998) The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396:177–180.  https://doi.org/10.1038/24179 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Komuro H et al (1999) p27KIP1 deletions in childhood acute lymphoblastic leukemia. Neoplasia 1:253–261CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kawamata N et al (1995) Molecular analysis of the cyclin-dependent kinase inhibitor gene p27/Kip1 in human malignancies. Cancer Res 55:2266–2269PubMedGoogle Scholar
  75. 75.
    Shilatifard A (2012) The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81:65–95.  https://doi.org/10.1146/annurev-biochem-051710-134100 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Zang ZJ et al (2012) Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet 44:570–574.  https://doi.org/10.1038/ng.2246 CrossRefPubMedGoogle Scholar
  77. 77.
    Kandoth C et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339.  https://doi.org/10.1038/nature12634 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13:283–296.  https://doi.org/10.1038/nrm3330 CrossRefPubMedGoogle Scholar
  79. 79.
    Chen Z et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730.  https://doi.org/10.1038/nature03918 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kwabi-Addo B et al (2001) Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci U S A 98:11563–11568.  https://doi.org/10.1073/pnas.201167798 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Alimonti A et al (2010) Subtle variations in Pten dose determine cancer susceptibility. Nat Genet 42:454–458.  https://doi.org/10.1038/ng.556 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Tang YC, Amon A (2013) Gene copy-number alterations: a cost-benefit analysis. Cell 152:394–405.  https://doi.org/10.1016/j.cell.2012.11.043 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Sheltzer JM et al (2017) Single-chromosome gains commonly function as tumor suppressors. Cancer Cell 31:240–255.  https://doi.org/10.1016/j.ccell.2016.12.004 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Adams DJ et al (2004) Mutagenic insertion and chromosome engineering resource (MICER). Nat Genet 36:867–871.  https://doi.org/10.1038/ng1388 CrossRefPubMedGoogle Scholar
  85. 85.
    Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823.  https://doi.org/10.1126/science.1231143 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Mali P et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826.  https://doi.org/10.1126/science.1232033 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Shalem O et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87.  https://doi.org/10.1126/science.1247005 CrossRefPubMedGoogle Scholar
  88. 88.
    Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–2165.  https://doi.org/10.1038/sj.onc.1210302 CrossRefPubMedGoogle Scholar
  89. 89.
    Johnson EJ et al (1996) Molecular definition of a narrow interval at 7q22.1 associated with myelodysplasia. Blood 87:3579–3586PubMedGoogle Scholar
  90. 90.
    Schwartz S et al (2003) Human-mouse alignments with BLASTZ. Genome Res 13:103–107.  https://doi.org/10.1101/gr.809403 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Wasserman WW, Palumbo M, Thompson W, Fickett JW, Lawrence CE (2000) Human-mouse genome comparisons to locate regulatory sites. Nat Genet 26:225–228.  https://doi.org/10.1038/79965 CrossRefPubMedGoogle Scholar
  92. 92.
    Sanchez-Rivera FJ, Jacks T (2015) Applications of the CRISPR-Cas9 system in cancer biology. Nat Rev Cancer 15:387–395.  https://doi.org/10.1038/nrc3950 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Tschaharganeh DF, Bosbach B, Lowe SW (2016) Coordinated tumor suppression by chromosome 8p. Cancer Cell 29:617–619.  https://doi.org/10.1016/j.ccell.2016.04.011 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Kotini AG et al (2017) Stage-specific human induced pluripotent stem cells map the progression of myeloid transformation to transplantable leukemia. Cell Stem Cell 20:315–328 e317.  https://doi.org/10.1016/j.stem.2017.01.009
  95. 95.
    Papapetrou EP (2016) Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nat Med 22:1392–1401.  https://doi.org/10.1038/nm.4238 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Xue W et al (2012) A cluster of cooperating tumor-suppressor gene candidates in chromosomal deletions. Proc Natl Acad Sci U S A 109:8212–8217.  https://doi.org/10.1073/pnas.1206062109 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Davoli T et al (2013) Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155:948–962.  https://doi.org/10.1016/j.cell.2013.10.011 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Nijhawan D et al (2012) Cancer vulnerabilities unveiled by genomic loss. Cell 150:842–854.  https://doi.org/10.1016/j.cell.2012.07.023 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Muller FL et al (2012) Passenger deletions generate therapeutic vulnerabilities in cancer. Nature 488:337–342.  https://doi.org/10.1038/nature11331 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Davoli T, Uno H, Wooten EC, Elledge SJ (2017) Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355.  https://doi.org/10.1126/science.aaf8399

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mei Chen
    • 1
  • Yi Yang
    • 1
  • Yu Liu
    • 1
  • Chong Chen
    • 1
  1. 1.Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and National Collaborative Innovation CenterChengduChina

Personalised recommendations