Advertisement

The CRISPR/Cas9 System as a Tool to Engineer Chromosomal Translocation In Vivo

  • Taek-Chin Cheong
  • Rafael B. Blasco
  • Roberto ChiarleEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1044)

Abstract

The CRISPR/Cas9 system has emerged as a powerful tool to edit the genome. Among many applications, the system generates the exciting possibility of engineering small and large portions of chromosomes to induce a variety of structural alterations such as deletions, inversions, insertions and inter-chromosomal translocations. Furthermore, the availability of viral vectors that express Cas9 has been critical to deliver the CRISPR/Cas9 system directly in vivo to induce chromosomal rearrangements. This review provides an overview of the state-of-the-art CRISPR/Cas9 technology to model a variety of rearrangements in vivo in animal models.

Keywords

CRISPR/Cas9 Chromosomal translocations Cancer Mouse models In vivo delivery 

Notes

Acknowledgments

This work was supported by National Institute of Health grants R01 CA196703-01 and R01 CA222598-01 to R.C.; Associazione Italiana per la Ricerca sul Cancro (AIRC) grant IG-12023 to R.C.; Worldwide Cancer Research (former AICR) grant 12-0216 to R.C.; National Research Foundation of Korea (NRF) fellowship 2016R1A6A3A03006840 to T.C.C.

Author Information

The authors declare no competing financial interests. Correspondence and requests for materials should be addressed to RC. (roberto.chiarle@childrens.harvard.edu).

References

  1. 1.
    Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338.  https://doi.org/10.1038/nature10886CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823.  https://doi.org/10.1126/science.1231143CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hsu PD et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832.  https://doi.org/10.1038/nbt.2647CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821.  https://doi.org/10.1126/science.1225829CrossRefPubMedGoogle Scholar
  5. 5.
    Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355.  https://doi.org/10.1038/nbt.2842CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ran FA et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191.  https://doi.org/10.1038/nature14299CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hou Z et al (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A 110:15644–15649.  https://doi.org/10.1073/pnas.1313587110CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zetsche B et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771.  https://doi.org/10.1016/j.cell.2015.09.038CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Piganeau M et al (2013) Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res 23:1182–1193.  https://doi.org/10.1101/gr.147314.112CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chiarle R et al (2011) Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147:107–119.  https://doi.org/10.1016/j.cell.2011.07.049CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Frock RL et al (2015) Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 33:179–186.  https://doi.org/10.1038/nbt.3101CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278.  https://doi.org/10.1016/j.cell.2014.05.010CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Shalem O, Sanjana NE, Zhang F (2015) High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 16:299–311.  https://doi.org/10.1038/nrg3899CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Doudna, J. A. & Charpentier, E. (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096.  https://doi.org/10.1126/science.1258096CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Maddalo D et al (2014) In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516:423–427.  https://doi.org/10.1038/nature13902CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Blasco RB et al (2014) Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep 9:1219–1227.  https://doi.org/10.1016/j.celrep.2014.10.051CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cheong TC, Compagno M, Chiarle R (2016) Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system. Nat Commun 7:10934.  https://doi.org/10.1038/ncomms10934CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Torres R et al (2014) Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat Commun 5:3964.  https://doi.org/10.1038/ncomms4964CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Richardson C, Jasin M (2000) Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405:697–700.  https://doi.org/10.1038/35015097CrossRefPubMedGoogle Scholar
  20. 20.
    Yuan Y et al (2001) AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci U S A 98:10398–10403.  https://doi.org/10.1073/pnas.171321298CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Choi PS, Meyerson M (2014) Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun 5:3728.  https://doi.org/10.1038/ncomms4728CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lagutina IV et al (2015) Modeling of the human alveolar rhabdomyosarcoma Pax3-Foxo1 chromosome translocation in mouse myoblasts using CRISPR-Cas9 nuclease. PLoS Genet 11:e1004951.  https://doi.org/10.1371/journal.pgen.1004951CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Torres-Ruiz R et al (2017) Efficient recreation of t(11;22) EWSR1-FLI1(+) in human stem cells using CRISPR/Cas9. Stem Cell Reports 8:1408–1420.  https://doi.org/10.1016/j.stemcr.2017.04.014CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Vanoli F et al (2017) CRISPR-Cas9-guided oncogenic chromosomal translocations with conditional fusion protein expression in human mesenchymal cells. Proc Natl Acad Sci U S A 114:3696–3701.  https://doi.org/10.1073/pnas.1700622114CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Semrau S et al (2014) FuseFISH: robust detection of transcribed gene fusions in single cells. Cell Rep 6:18–23.  https://doi.org/10.1016/j.celrep.2013.12.002CrossRefPubMedGoogle Scholar
  26. 26.
    Gostissa M, Alt FW, Chiarle R (2011) Mechanisms that promote and suppress chromosomal translocations in lymphocytes. Annu Rev Immunol 29:319–350.  https://doi.org/10.1146/annurev-immunol-031210-101329CrossRefPubMedGoogle Scholar
  27. 27.
    Chen ZH et al (2017) Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene. Nat Biotechnol 35:543–550.  https://doi.org/10.1038/nbt.3843CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Soda M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566.  https://doi.org/10.1038/nature05945CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang Y et al (2012) Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148:908–921.  https://doi.org/10.1016/j.cell.2012.02.002CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mani RS et al (2009) Induced chromosomal proximity and gene fusions in prostate cancer. Science 326:1230.  https://doi.org/10.1126/science.1178124CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lin C et al (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139:1069–1083.  https://doi.org/10.1016/j.cell.2009.11.030CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Boroviak K, Doe B, Banerjee R, Yang F, Bradley A (2016) Chromosome engineering in zygotes with CRISPR/Cas9. Genesis 54:78–85.  https://doi.org/10.1002/dvg.22915CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Shin HY et al (2017) CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun 8:15464.  https://doi.org/10.1038/ncomms15464CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Reimer J et al (2017) CRISPR-Cas9-induced t(11;19)/MLL-ENL translocations initiate leukemia in human hematopoietic progenitor cells in vivo. Haematologica 102:1558–1566.  https://doi.org/10.3324/haematol.2017.164046CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Nelson CE et al (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351:403–407.  https://doi.org/10.1126/science.aad5143CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tabebordbar M et al (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351:407–411.  https://doi.org/10.1126/science.aad5177CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wu W et al (2017) Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model. Proc Natl Acad Sci U S A 114:1660–1665.  https://doi.org/10.1073/pnas.1614775114CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in disease. Annu Rev Med 61:437–455.  https://doi.org/10.1146/annurev-med-100708-204735CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kraft, K. et al. (2015) Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in Mice. Cell Reports.  https://doi.org/10.1016/j.celrep.2015.01.016
  41. 41.
    Lupianez DG et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–1025.  https://doi.org/10.1016/j.cell.2015.04.004CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Dixon JR et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380.  https://doi.org/10.1038/nature11082CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Charton K et al (2016) Exploiting the CRISPR/Cas9 system to study alternative splicing in vivo: application to titin. Hum Mol Genet 25:4518–4532.  https://doi.org/10.1093/hmg/ddw280CrossRefPubMedGoogle Scholar
  44. 44.
    Han T et al (2017) R-Spondin chromosome rearrangements drive Wnt-dependent tumour initiation and maintenance in the intestine. Nat Commun 8:15945.  https://doi.org/10.1038/ncomms15945CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Taek-Chin Cheong
    • 1
    • 2
  • Rafael B. Blasco
    • 1
    • 2
  • Roberto Chiarle
    • 1
    • 2
    Email author
  1. 1.Department of PathologyBoston Children’s HospitalBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA

Personalised recommendations