Skip to main content

Role of Secondary Metabolites for the Mitigation of Cadmium Toxicity in Sorghum Grown Under Mycorrhizal Inoculated Hazardous Waste Site

  • Chapter
  • First Online:

Abstract

Apart from the many primary metabolites like carbohydrate, proteins, fats, and hormones, a number of organic compounds in plants are not synthesized in the principle stream, but they are most important for the plant functions. These compounds are secondary metabolites broadly classified in terpenes, alkaloids, and phenols. Nowadays, heavy metal contamination is the greatest concern worldwide. The role of secondary metabolites is well acquainted with facts that it imparts the significant effect in the mitigation of heavy metal toxicity in the plants. The FTIR data of the experiments indicate clearly that phenols, aldehyde, and ketones will play the critical role in the regulation of heavy metal toxicity in plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aafi, N. E., Brhada, F., Dary, M., Maltouf, A. F., & Pajuelo, E. (2012). Rhizostabilization of metals in soils using Lupinusluteus inoculated with the metal resistant rhizobacteriumserratia sp. MSMC 541. International Journal of Phytoremediation, 14, 261–274.

    Article  CAS  PubMed  Google Scholar 

  • Azcón, R., Perálvarez, M. D. C., Roldán, A., & Barea, J. M. (2010). Arbuscularmycorrhizal fungi, Bacilluscereus, and Candida parapsilosis from a multi contaminated soil alleviate metal toxicity in plants. Microbial Ecology, 59, 668–677.

    Article  PubMed  Google Scholar 

  • Babu, A. G., & Reddy, S. (2011). Dual inoculation of arbuscularmycorrhizal and phosphate solubilizing fungi contributes in sustainable maintenance of plant health in fly ash ponds. Water Air Soil Pollution, 219, 3–10.

    Article  CAS  Google Scholar 

  • Baker, A. J. M., McGrath, S. P., Reeves, R. D., & Smith, J. A. C. (2000). Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. Boca Raton: Lewis Publisher.

    Google Scholar 

  • Barac, T., Taghavi, S., Borremans, B., Provoost, A., Oeyen, L., Colpaert, J. V., Vangronsveld, J., & van der Lelie, D. (2004). Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile organic pollutants. Nature and Biotechnology, 22, 583–588.

    Article  CAS  Google Scholar 

  • Barona, A., Aranguiz, I., & Elias, A. (2001). Metal associations in soils before and after EDTA extractive decontamination: Implications for the effectiveness of further clean-up procedures. Environmental Pollution, 113, 79–85.

    Article  CAS  PubMed  Google Scholar 

  • Bouwman, L. A., Bloem, J., Romkens, P. F. A. M., & Japenga, J. (2005). EDGA amendment of slightly heavy metal loaded soil affects heavy metal solubility, crop growth and microbivorous nematodes but not bacteria and herbivorous nematodes. Soil Biology and Biochemistry, 37, 271–278.

    Article  CAS  Google Scholar 

  • Braud, A., Jézéquel, K., Bazot, S., & Lebeau, T. (2009). Enhanced phytoextraction of an agricultural Cr, Hg and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere, 74, 280–286.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S. Y., & Lin, J. G. (2001). Effect of substrate concentration on bioleaching of metal-contaminated sediment. Journal of Hazard Matter, 82, 77–89.

    Article  CAS  Google Scholar 

  • Chen, B., Shen, H., Li, X., Feng, G., & Christie, P. (2004). Effects of EDTA application and arbuscularmycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant and Soil, 261, 219–229.

    Article  CAS  Google Scholar 

  • Di Simine, C. D., Sayer, J. A., & Gadd, G. M. (1998). Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biology and Fertility of Soils, 28, 87–94.

    Article  Google Scholar 

  • Dickinson, N. M., & Pulford, I. D. (2005). Cadmium phytoextraction using short rotation coppice Salix: The evidence trail. Environmental International, 31, 609–613.

    Article  CAS  Google Scholar 

  • Diels, L., De Smet, M., Hooyberghs, L., & Corbisier, P. (1999). Heavy metals bioremediation of soil. Molecular Biotechnology, 12, 154–158.

    Article  Google Scholar 

  • Dimkpa, C. O., Svatos, A., Merten, D., Buchel, G., & Kothe, E. (2008). Hydroxamatesiderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vignaunguiculata L.) under nickel stress. Canadian Journal of Microbiology, 54, 163–172.

    Article  CAS  PubMed  Google Scholar 

  • Dubbin, W. E., & Louise Ander, E. (2003). Influence of microbial hydroxamatesiderophores on Pb(II) desorption from a-FeOOH. Applied Geochemistry, 18, 1751–1756.

    Article  CAS  Google Scholar 

  • Glick, B. R. (2003). Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnological Advancement, 21, 383–393.

    Article  CAS  Google Scholar 

  • Herman, D., Artiola, J., & Miller, R. (1995). Removal of cadmium, lead and zinc from soil by a rhamno lipid biosurfactant. Environmental Science and Technology, 29, 2280–2285.

    Article  CAS  PubMed  Google Scholar 

  • Hrynkiewicz, K., Dabrowska, G., Baum, C., Niedojadlo, K., & Leinweber, P. (2012). Interactive and single effects of ectomycorrhiza formation and Bacillus cereus on metallothionein mt1 expression and phytoextraction of Cd and Zn by willows. Water Air Soil Pollution, 223, 957–968.

    Article  CAS  Google Scholar 

  • Khan, A. G. (2006). Mycorrhizremediation an enhanced form of phytoremediation. Journal Zhejiang University Science B, 7, 503–514.

    Article  PubMed  Google Scholar 

  • Khan, A. G., Kuek, C., Chaudhry, T. M., Khoo, C. S., & Hayes, W. J. (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41, 197–207.

    Article  CAS  PubMed  Google Scholar 

  • Krupa, P., & Kozdrój, J. (2007). Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinussylvestris L.) seedlings. Water Air Soil Pollution, 182, 83–90.

    Article  CAS  Google Scholar 

  • Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., & Lugtenberg, B. J. J. (2004). Rhizoremediation: A beneficial plant microbe interaction. Molecular Plant Microbial Interaction, 17, 6–15.

    Article  CAS  Google Scholar 

  • Lasat, M. M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.

    Article  CAS  PubMed  Google Scholar 

  • Lombi, E., Zhao, F. J., Dunham, S. J., & Mcgrath, S. P. (2001). Phytoremediation of heavy metal-contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction. Journal of Environmental Quality, 30, 1916–1926.

    Article  Google Scholar 

  • Ma, Y., Prasad, M. N. V., Rajkumar, M., & Freitas, H. (2011). Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29, 248–258.

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan, M., Poonguzhali, S., & Sa, T. (2007). Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere, 69, 220–228.

    Article  CAS  PubMed  Google Scholar 

  • Majewska, M., & Kurek, E. (2005). Effect of microbial activity on Cd sorption/desorption processes in soil polluted with various Cd sources. Geological Research Abstract, 7, 04332.

    Google Scholar 

  • McGrath, S. P., Zhao, J., & Lombi, E. (2002). Phytoremediation of metals, metalloids, and radionuclides. In Advances in agronomy (pp. 1–56). London: Academic.

    Google Scholar 

  • Meharg, A. A. (2003). The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycological Research, 107, 1253–1265.

    Article  CAS  PubMed  Google Scholar 

  • Mulligan, C. N., Yong, R. N., Gibbs, B. F., James, S., & Bennett, H. P. J. (1999). Metal removal from contaminated soils and sediments by biosurfactants surfactin. Environmental Science Technology, 33, 3812–3820.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology, 60, 193–207.

    Article  Google Scholar 

  • Rajkumar, M., Ae, N., Prasad, M. N. V., & Freitas, H. (2012). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnology, 28, 142–149.

    Article  CAS  Google Scholar 

  • Romkens, P., Bouwman, L., Japenga, J., & Draaisma, C. (2002). Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environmental Pollution, 116, 109–121.

    Article  CAS  PubMed  Google Scholar 

  • Shen, Z. G., Li, X. D., Wang, C. C., Chen, H. M., & Chua, H. (2002). Lead phytoextraction from contaminated soil with high-biomass plant species. Journal of Environmental Quality, 31, 1893–1900.

    Article  CAS  PubMed  Google Scholar 

  • Shi, J. Y., Lin, H. R., Yuan, X. F., Chen, X. C., Shen, C. F., & Chen, Y. X. (2011). Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur. Molecules, 16, 1409–1417.

    Article  CAS  PubMed  Google Scholar 

  • Van Aken, B., Yoon, J. M., & Schnoor, J. L. (2004). Biodegradation of nitrosubstituted explosives TNT, RDX, and HMX by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populusdeltoides -nigra DN34). Applied Environmental Microbiology, 70, 508–517.

    Article  CAS  PubMed  Google Scholar 

  • Vivas, A., Voros, I., Biro, B., Barea, J. M., Ruiz-Lozano, J. M., & Azcon, R. (2003). Beneficial effects of indigenous Cd tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contamination. Applied Soil Ecology, 24, 177–186.

    Article  Google Scholar 

  • Zhuang, X., Chen, J., Shim, H., & Bai, Z. (2007). New advances in plant growth promoting rhizobacteria for bioremediation. Environmental International, 33, 406–413.

    Article  Google Scholar 

Download references

Acknowledgment

Authors are thankful to Lovely Professional University, Jalandhar, Punjab, and the Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University for providing the support for this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, P., Pathak, S., Kumar, M., Dwivedi, P. (2018). Role of Secondary Metabolites for the Mitigation of Cadmium Toxicity in Sorghum Grown Under Mycorrhizal Inoculated Hazardous Waste Site. In: Kumar, N. (eds) Biotechnological Approaches for Medicinal and Aromatic Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-0535-1_8

Download citation

Publish with us

Policies and ethics