Skip to main content

Membrane Phospholipid Biosynthesis in Bacteria

  • Chapter
  • First Online:
Book cover Advances in Membrane Proteins

Abstract

Phospholipids constitute a major and essential part of biomembranes and provide mechanical support for membrane proteins. As well, they participate in important cellular activities by interacting with membrane proteins and regulating their functions. In the past decades, enzymes responsible for phospholipid synthesis have been largely identified, purified and characterized, mostly using Escherichia coli and Bacillus subtilis as the model systems. Ever-increasing genome sequencing projects revealed similar enzymes in other microorganisms, as well as new enzymes and pathways for lipids that are traditionally regarded as eukaryotic lipids such as phosphatidylcholine and phosphatidylinositol. Enzymes involved in the phospholipid biosynthesis pathway are mostly associated with the membrane, either peripherally or as an integral part. Structural biology for the pathway had been lacking for these hydrophobic enzymes but are catching up owing to recent technological advances in the membrane protein structural biology field. Here, the biosynthesis pathway of bacterial phospholipids, starting from glycerol 3-phosphate, is summarized. Architecture of the enzymes and mechanisms for substrate binding and catalysis are also illustrated for those whose structural information are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vance DE. Reviews in cell biology and molecular medicine. Wiley-VCH Verlag GmbH & Co. KGaA; 2006.

    Google Scholar 

  2. Jackowski S, Rock CO. Phospholipids and phospholipid metabolism. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids. 2013;1831:469–70.

    Article  CAS  Google Scholar 

  3. Dowhan W, Bogdanov M. Functional roles of lipids in membranes. In:New Comprehensive Biochemistry, vol. 36. Amsterdam: Elsevier; 2002. p. 1–35.

    Google Scholar 

  4. Palsdottir H, Hunte C. Lipids in membrane protein structures. Biochim Biophys Acta (BBA) Biomembr. 2004;1666:2–18.

    Article  CAS  Google Scholar 

  5. Devaux PF, Herrmann A, Ohlwein N, Kozlov MM. How lipid flippases can modulate membrane structure. Biochim Biophys Acta (BBA) – Biomembr. 2008;1778:1591–600.

    Article  CAS  Google Scholar 

  6. Opekarová M, Tanner W. Specific lipid requirements of membrane proteins—a putative bottleneck in heterologous expression. Biochim Biophys Acta (BBA) Biomembr. 2003;1610:11–22.

    Article  CAS  Google Scholar 

  7. Hattori M, Hibbs RE, Gouaux E. A fluorescence-detection size-exclusion chromatography-based thermostability assay to identify membrane protein expression and crystallization conditions. Structure. 2012;20:1293–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Levi V, Rossi JPFC, Echarte MM, Castello PR, González Flecha FL. Thermal stability of the plasma membrane calcium pump. Quantitative analysis of its dependence on lipid-protein interactions. J Membr Biol. 2000;173:215–25.

    Article  PubMed  CAS  Google Scholar 

  9. Bowie JU. Stabilizing membrane proteins. Curr Opin Struct Biol. 2001;11:397–402.

    Article  PubMed  CAS  Google Scholar 

  10. Callaghan R, Berridge G, Ferry DR, Higgins CF. The functional purification of P-glycoprotein is dependent on maintenance of a lipid–protein interface. Biochim Biophys Acta (BBA) – Biomembr. 1997;1328:109–24.

    Article  CAS  Google Scholar 

  11. Zhang M, Mileykovskaya E, Dowhan W. Gluing the respiratory chain together: Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem. 2002;277:43553–6.

    Article  PubMed  CAS  Google Scholar 

  12. Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G. Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta (BBA) – Bioenerg. 2014;1837:408–17.

    Article  CAS  Google Scholar 

  13. Pfeiffer K, et al. Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem. 2003;278:52873–80.

    Article  PubMed  CAS  Google Scholar 

  14. Pebay-Peyroula E, et al. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature. 2003;426:39.

    Article  PubMed  CAS  Google Scholar 

  15. Robertson RM, et al. A two-helix motif positions the active site of lysophosphatidic acid acyltransferase for catalysis within the membrane bilayer. Nat Struct Mol Biol. 2017;24:666–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wöhlert D, Kühlbrandt W, Yildiz Ö. Structure and substrate ion binding in the sodium/proton antiporter PaNhaP. eLife. 2014;3:e03579.

    Article  PubMed  PubMed Central  Google Scholar 

  17. McAuley KE, et al. Structural details of an interaction between cardiolipin and an integral membrane protein. Proc Natl Acad Sci U S A. 1999;96:14706–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lange C, Nett JH, Trumpower BL, Hunte C. Specific roles of protein–phospholipid interactions in the yeast cytochrome bc(1) complex structure. EMBO J. 2001;20:6591–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Shintre CA, et al. Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc Natl Acad Sci U S A. 2013;110:9710–5.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yankovskaya V, et al. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science. 2003;299:700–4.

    Article  PubMed  CAS  Google Scholar 

  21. Guo R, Zong S, Wu M, Gu J, Yang M. Architecture of human mitochondrial respiratory megacomplex I2III2IV2. Cell. 2017;170:1247–57.e1212.

    Article  PubMed  CAS  Google Scholar 

  22. Musille PM, et al. Antidiabetic phospholipid – nuclear receptor complex reveals the mechanism for phospholipid driven gene regulation. Nat Struct Mol Biol. 2012;19:532–S532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lenaeus MJ, et al. Structures of closed and open states of a voltage-gated sodium channel. Proc Natl Acad Sci U S A. 2017;114:E3051–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Murakami M, Kouyama T. Crystallographic analysis of the primary photochemical reaction of squid rhodopsin. J Mol Biol. 2011;413:615–27.

    Article  PubMed  CAS  Google Scholar 

  25. Mowrey D, et al. Signal transduction pathways in the pentameric ligand-gated ion channels. PLoS ONE. 2013;8:e64326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Toyoshima C, Yonekura S-I, Tsueda J, Iwasawa S. Trinitrophenyl derivatives bind differently from parent adenine nucleotides to Ca(2+)-ATPase in the absence of Ca(2+). Proc Natl Acad Sci U S A. 2011;108:1833–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bai X-C, et al. An atomic structure of human γ-secretase. Nature. 2015;525:212–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Yang H, et al. Pore architecture of TRIC channels and insights into their gating mechanism. Nature. 2016;538:537–41.

    Article  PubMed  CAS  Google Scholar 

  29. Dong YY, et al. K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science. 2015;347:1256–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Kanai R, Ogawa H, Vilsen B, Cornelius F, Toyoshima C. Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state. Nature. 2013;502:201–6.

    Article  PubMed  CAS  Google Scholar 

  31. Clark KM, Jenkins JL, Fedoriw N, Dumont ME. Human CaaX protease ZMPSTE24 expressed in yeast: structure and inhibition by HIV protease inhibitors. Protein Sci. 2017;26:242–57.

    Article  PubMed  CAS  Google Scholar 

  32. Hu N-J, Iwata S, Cameron AD, Drew D. Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature. 2011;478:408–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wu J, et al. Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution. Nature. 2016;537:191.

    Article  PubMed  CAS  Google Scholar 

  34. Li J, Edwards PC, Burghammer M, Villa C, Schertler GFX. Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol. 2004;343:1409–38.

    Article  PubMed  CAS  Google Scholar 

  35. Yu L-J, Kawakami T, Kimura Y, Wang-Otomo Z-Y. Structural basis for the unusual Qy red-shift and enhanced thermostability of the LH1 complex from Thermochromatium tepidum. Biochemistry. 2016;55:6495–504.

    Article  PubMed  CAS  Google Scholar 

  36. Inaoka DK, et al. Structural insights into the molecular design of flutolanil derivatives targeted for fumarate respiration of parasite mitochondria. Inter J Mol Sci. 2015;16:15287–308.

    Article  CAS  Google Scholar 

  37. Vogeley L, et al. Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 Å. Science. 2004;306:1390–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Eren E, et al. Substrate specificity within a family of outer membrane carboxylate channels. PLoS Biol. 2012;10:e1001242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Frauenfeld J, et al. Cryo–EM structure of the ribosome–SecYE complex in the membrane environment. Nat Struct Mol Biol. 2011;18:614–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hirschi M, et al. Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3. Nature. 2017;550:411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Mao G, et al. Crystal structure of E. coli lipoprotein diacylglyceryl transferase. Nat Commun. 2016;7:10198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Laganowsky A, et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature. 2014;510:172–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ghachi ME, et al. Crystal structure and biochemical characterization of the transmembrane PAP2 type phosphatidylglycerol phosphate phosphatase from Bacillus subtilis. Cell Mol Life Sci. 2017;74:2319–32.

    Article  PubMed  CAS  Google Scholar 

  44. Vitrac H, Bogdanov M, Dowhan W. In vitro reconstitution of lipid-dependent dual topology and postassembly topological switching of a membrane protein. Proc Natl Acad Sci U S A. 2013;110:9338–43.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bogdanov M, Heacock PN, Dowhan W. A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J. 2002;21:2107–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wang X, Bogdanov M, Dowhan W. Topology of polytopic membrane protein subdomains is dictated by membrane phospholipid composition. EMBO J. 2002;21:5673–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Vitrac H, Bogdanov M, Dowhan W. Lipid-protein interactions as a determinant of the function and topogenesis of membrane proteins. FASEB J. 2012;26:602.603.

    Google Scholar 

  48. Bogdanov M, Xie J, Heacock P, Dowhan W. To flip or not to flip: lipid–protein charge interactions are a determinant of final membrane protein topology. J Cell Biol. 2008;182:925–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Dowhan W, Bogdanov M. Lipid-protein interactions as determinants of membrane protein structure and function. Biochem Soc Trans. 2011;39:767–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Dowhan W, Vitrac H, Bogdanov M. May the force be with you: unfolding lipid-protein interactions by single-molecule force spectroscopy. Structure. 2015;23:612–4.

    Article  PubMed  CAS  Google Scholar 

  51. Bogdanov M, Dowhan W. Lipid-dependent generation of dual topology for a membrane protein. J Biol Chem. 2012;287:37939–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Bogdanov M, Dowhan W, Vitrac H. Lipids and topological rules governing membrane protein assembly. Biochim Biophys Acta (BBA) – Mol Cell Res. 2014;1843:1475–88.

    Article  CAS  Google Scholar 

  53. Wickner WT. Eugene Patrick Kennedy, 1919–2011. Proc Natl Acad Sci U S A. 2011;108:19122–3.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dowhan W. The Raetz pathway for lipid A biosynthesis: Christian Rudolf Hubert Raetz, MD PhD, 1946–2011. J Lipid Res. 2011;52:1857–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wickner WT, Stubbe J, Hirschberg CB, Garrett T, Dowhan W. Chris Raetz, scientist and enduring friend. Proc Natl Acad Sci U S A. 2011;108:17255–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zagorski N. Profile of Christian R. H. Raetz. Proc Natl Acad Sci U S A. 2007;104:17252–4.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dowhan W. Understanding phospholipid function: why are there so many lipids? J Biol Chem. 2017;292:10755–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res. 2013;52:249–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Bell RM, Mavis RD, Osborn MJ, Roy Vagelos P. Enzymes of phospholipid metabolism: localization in the cytoplasmic and outer membrane of the cell envelope of Escherichia coli and Salmonella typhimurium. Biochim Biophys Acta (BBA) Biomembr. 1971;249:628–35.

    Article  CAS  Google Scholar 

  60. Wilkison WO, Bell RM. sn-Glycerol-3-phosphate acyltransferase from Escherichia coli. Biochim Biophys Acta (BBA) Lipids Lipid Metab. 1997;1348:3–9.

    Article  CAS  Google Scholar 

  61. Dowhan W. A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. Biochim Biophys Acta. 2013;1831:471–94.

    Article  PubMed  CAS  Google Scholar 

  62. Yao J, Rock CO. How bacterial pathogens eat host lipids: implications for the development of fatty acid synthesis therapeutics. J Biol Chem. 2015;290:5940–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Parsons JB, et al. Identification of a two-component fatty acid kinase responsible for host fatty acid incorporation by Staphylococcus aureus. Proc Natl Acad Sci U S A. 2014;111:10532–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Lu Y-J, et al. Acyl-phosphates initiate membrane phospholipid synthesis in gram-positive pathogens. Mol Cell. 2006;23:765–72.

    Article  PubMed  CAS  Google Scholar 

  65. Crellin PK, Luo C-Y, Morita YS. In: Baez RV, editor. Lipid metabolism, Ch. 06. InTech; 2013.

    Google Scholar 

  66. Sohlenkamp C, López-Lara IM, Geiger O. Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res. 2003;42:115–62.

    Article  PubMed  CAS  Google Scholar 

  67. Crick PJ, Guan XL. Lipid metabolism in mycobacteria—insights using mass spectrometry-based lipidomics. Biochim Biophys Acta (BBA) – Mol Cell Biol Lipids. 2016;1861:60–7.

    Article  CAS  Google Scholar 

  68. Parsons JB, Frank MW, Jackson P, Subramanian C, Rock CO. Incorporation of extracellular fatty acids by a fatty acid kinase-dependent pathway in staphylococcus aureus. Mol Microbiol. 2014;92:234–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Bell RM, Cronan JE Jr. Mutants of Escherichia coli defective in membrane phospholipid synthesis. Phenotypic suppression of sn-glycerol-3-phosphate acyltransferase Km mutants by loss of feedback inhibition of the biosynthetic sn-glycerol-3-phosphate dehydrogenase. J Biol Chem. 1975;250:7153–8.

    PubMed  CAS  Google Scholar 

  70. Heath RJ, Rock CO. A missense mutation accounts for the defect in the glycerol-3-Phosphate acyltransferase expressed in the plsB26 Mutant. J Bacteriol. 1999;181:1944–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Lightner VA, et al. Membrane phospholipid synthesis in Escherichia coli. Cloning of a structural gene (plsB) of the sn-glycerol-3-phosphate acyl/transferase. J Biol Chem. 1980;255:9413–20.

    PubMed  CAS  Google Scholar 

  72. Green PR, Merrill AH Jr, Bell RM. Membrane phospholipid synthesis in Escherichia coli. Purification, reconstitution, and characterization of sn-glycerol-3-phosphate acyltransferase. J Biol Chem. 1981;256:11151–9.

    PubMed  CAS  Google Scholar 

  73. Wenger C, Salvador R, Basser PJ, Miranda PC. The electric field distribution in the brain during TTFields therapy and its dependence on tissue dielectric properties and anatomy: a computational study. Phys Med Biol. 2015;60:7339–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Wilkison WO, Walsh JP, Corless JM, Bell RM. Crystalline arrays of the Escherichia coli sn-glycerol-3-phosphate acyltransferase, an integral membrane protein. J Biol Chem. 1986;261:9951–8.

    PubMed  CAS  Google Scholar 

  75. Scheideler MA, Bell RM. Efficiency of reconstitution of the membrane-associated sn-glycerol 3-phosphate acyltransferase of Escherichia coli. J Biol Chem. 1986;261:10990–5.

    PubMed  CAS  Google Scholar 

  76. Scheideler MA, Bell RM. Characterization of active and latent forms of the membrane-associated sn-glycerol-3-phosphate acyltransferase of Escherichia coli. J Biol Chem. 1991;266:14321–7.

    PubMed  CAS  Google Scholar 

  77. Zhang Y-M, Rock CO. Thematic review series: glycerolipids. Acyltransferases in bacterial glycerophospholipid synthesis. J Lipid Res. 2008;49:1867–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Yao J, Rock CO. Phosphatidic acid synthesis in bacteria. Biochim Biophys Acta (BBA) – Mol Cell Biol Lipids. 2013;1831:495–502.

    Article  CAS  Google Scholar 

  79. Heath RJ, Rock CO. A conserved histidine is essential for glycerolipid acyltransferase catalysis. J Bacteriol. 1998;180:1425–30.

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Hedstrom L. Serine Protease mechanism and specificity. Chem Rev. 2002;102:4501–24.

    Article  PubMed  CAS  Google Scholar 

  81. Turnbull AP, et al. Analysis of the structure, substrate specificity, and mechanism of squash glycerol-3-phosphate (1)-acyltransferase. Structure. 2001;9:347–53.

    Article  PubMed  CAS  Google Scholar 

  82. Tamada T, et al. Substrate recognition and selectivity of plant glycerol-3-phosphate acyltransferases (GPATs) from Cucurbita moscata and Spinacea oleracea. Acta Crystallogr D Biol Crystallogr. 2004;60:13–21.

    Article  PubMed  CAS  Google Scholar 

  83. Lu Y-J, Zhang F, Grimes KD, Lee RE, Rock CO. Topology and active site of PlsY: the bacterial acylphosphate:glycerol-3-phosphate acyltransfeRASE. J Biol Chem. 2007;282:11339–46.

    Article  PubMed  CAS  Google Scholar 

  84. Li Z, et al. Structural insights into the committed step of bacterial phospholipid biosynthesis. Nat Commun. 2017;8:1691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Kim Y, Li H, Binkowski TA, Holzle D, Joachimiak A. Crystal structure of fatty acid/phospholipid synthesis protein PlsX from Enterococcus faecalis. J Struct Funct Genomics. 2009;10:157–63.

    Article  PubMed  CAS  Google Scholar 

  86. Badger J, et al. Structural analysis of a set of proteins resulting from a bacterial genomics project. Proteins. 2005;60:787–96.

    Article  PubMed  CAS  Google Scholar 

  87. Sibila O, Rodrigo-Troyano A, Shindo Y, Aliberti S, Restrepo MI. Multidrug-resistant pathogens in patients with pneumonia coming from the community. Curr Opin Pulm Med. 2016;22:219–26.

    Article  PubMed  CAS  Google Scholar 

  88. Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest. 2003;111:1265–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Nuermberger EL, Bishai WR. Antibiotic resistance in Streptococcus pneumoniae: What does the future hold? Clin Infect Dis. 2004;38:S363–71.

    Article  PubMed  CAS  Google Scholar 

  90. Grimes KD, et al. Novel acylphosphate mimics that target PlsY, an essential acyltransferase in gram-positive bacteria. ChemMedChem. 2008;3:1936–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Cherian P, et al. Acyl-sulfamates target the essential glycerol-phosphate acyltransferase (PlsY) in gram-positive bacteria. Bioorganic Med Chem. 2012;20:4985–94.

    Article  CAS  Google Scholar 

  92. Caffrey M, Li D, Dukkipati A. Membrane Protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Biochemistry. 2012;51:6266–88.

    Article  PubMed  CAS  Google Scholar 

  93. Brune M, Hunter JL, Corrie JET, Webb MR. Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. Biochemistry. 1994;33:8262–71.

    Article  PubMed  CAS  Google Scholar 

  94. Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev. 2001;65:1–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Dall’Acqua W, Carter P. Substrate-assisted catalysis: molecular basis and biological significance. Protein Sci. 2000;9:1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Li D, et al. Crystal structure of the integral membrane diacylglycerol kinase. Nature. 2013;497:521–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Wang Y, Zhang Y, Ha Y. Crystal structure of a rhomboid family intramembrane protease. Nature. 2006;444:179.

    Article  PubMed  CAS  Google Scholar 

  98. Zoll S, et al. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate–peptide complex structures. EMBO J. 2014;33:2408–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Liu X, Yin Y, Wu J, Liu Z. Structure and mechanism of an intramembrane liponucleotide synthetase central for phospholipid biosynthesis. Nat Commun. 2014;5:4244.

    Article  PubMed  CAS  Google Scholar 

  100. Clarke OB, et al. Structural basis for phosphatidylinositol-phosphate biosynthesis. Nat Commun. 2015;6:8505.

    Article  PubMed  Google Scholar 

  101. Vogeley L, et al. Structural basis of lipoprotein signal peptidase II action and inhibition by the antibiotic globomycin. Science. 2016;351:876–80.

    Article  PubMed  CAS  Google Scholar 

  102. Lu G, et al. Crystal structure of E. coli apolipoprotein N-acyl transferase. Nat Commun. 2017;8:15948.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Wiktor M, et al. Structural insights into the mechanism of the membrane integral N-acyltransferase step in bacterial lipoprotein synthesis. Nat Commun. 2017;8:15952.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Noland CL, et al. Structural insights into lipoprotein N-acylation by Escherichia coli apolipoprotein N-acyltransferase. Proc Natl Acad Sci U S A. 2017;114:E6044–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 2012;40:D370–6.

    Article  PubMed  CAS  Google Scholar 

  106. Yoshimura M, Oshima T, Ogasawara N. Involvement of the YneS/YgiH and PlsX proteins in phospholipid biosynthesis in both Bacillus subtilis and Escherichia coli. BMC Microbiol. 2007;7:69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Ericson ME, Subramanian C, Frank MW, Rock CO. Role of fatty acid kinase in cellular lipid homeostasis and SaeRS-dependent virulence factor expression in Staphylococcus aureus. mBio. 2017;8:e00988-17.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Broussard TC, et al. Biochemical roles for conserved residues in the bacterial fatty acid-binding protein family. J Biol Chem. 2016;291:6292–303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Brown AP, Coleman J, Tommey AM, Watson MD, Slabas AR. Isolation and characterisation of a maize cDNA that complements a 1-acyl sn-glycerol-3-phosphate acyltransferase mutant of Escherichia coli and encodes a protein which has similarities to other acyltransferases. Plant Mol Biol. 1994;26:211–23.

    Article  PubMed  CAS  Google Scholar 

  110. Bourgis F, et al. A plastidial lysophosphatidic acid acyltransferase from oilseed rape. Plant Physiol. 1999;120:913–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. White SW, et al. Crystal structure of lysophosphatidic acid acyltransferase reveals a paired reentrant helix membrane anchor that positions the active site inside the phospholipid bilayer. FASEB J. 2017;31(630):613.

    Google Scholar 

  112. Smith RL, O’Toole JF, Maguire ME, Sanders CR. Membrane topology of Escherichia coli diacylglycerol kinase. J Bacteriol. 1994;176:5459–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Van Horn WD, Sanders CR. Prokaryotic diacylglycerol kinase and undecaprenol kinase. Annu Rev Biophys. 2012;41:81–101.

    Article  PubMed  CAS  Google Scholar 

  114. Walsh JP, Loomis CR, Bell RM. Regulation of diacylglycerol kinase biosynthesis in Escherichia coli. A trans-acting dgkR mutation increases transcription of the structural gene. J Biol Chem. 1986;261:11021–7.

    PubMed  CAS  Google Scholar 

  115. Raetz CRH, Newman KF. Diglyceride kinase mutants of Escherichia coli: inner membrane association of 1,2-diglyceride and its relation to synthesis of membrane-derived oligosaccharides. J Bacteriol. 1979;137:860–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Beveridge TJ. Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol. 1999;181:4725–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  117. Raetz CR, Newman KF. Neutral lipid accumulation in the membranes of Escherichia coli mutants lacking diglyceride kinase. J Biol Chem. 1978;253:3882–7.

    PubMed  CAS  Google Scholar 

  118. Chang Y-Y, Kennedy EP. Pathways for the synthesis of glycerophosphatides in Escherichia coli. J Biol Chem. 1967;242:516–9.

    PubMed  CAS  Google Scholar 

  119. Schneider EG, Kennedy EP. Partial purification and properties of diglyceride kinase from Escherichia coli. Biochim Biophys Acta (BBA) Lipids Lipid Metab. 1976;441:201–12.

    Article  CAS  Google Scholar 

  120. Loomis CR, Walsh JP, Bell RM. sn-1,2-Diacylglycerol kinase of Escherichia coli. Purification, reconstitution, and partial amino- and carboxyl-terminal analysis. J Biol Chem. 1985;260:4091–7.

    PubMed  CAS  Google Scholar 

  121. Walsh JP, Fahrner L, Bell RM. sn-1,2-diacylglycerol kinase of Escherichia coli. Diacylglycerol analogues define specificity and mechanism. J Biol Chem. 1990;265:4374–81.

    PubMed  CAS  Google Scholar 

  122. Schneider EG, Kennedy EP. Phosphorylation of ceramide by diglyceride kinase preparations from Escherichia coli. J Biol Chem. 1973;248:3739–41.

    PubMed  CAS  Google Scholar 

  123. Bohnenberger E, Sandermann H. Lipid Ddpendence of Diacylglyderol Kinase from Escherichia coli. Eur J Biochem. 1983;132:645–50.

    Article  PubMed  CAS  Google Scholar 

  124. Walsh JP, Bell RM. sn-1,2-Diacylglycerol kinase of Escherichia coli. Structural and kinetic analysis of the lipid cofactor dependence. J Biol Chem. 1986;261:15062–9.

    PubMed  CAS  Google Scholar 

  125. Bohnenberger E, Sandermann H Jr. Diglyceride kinase from Escherichia coli. Modulation of enzyme activity by glycosphingolipids. Biochim Biophys Acta. 1982;685:44–50.

    Article  PubMed  CAS  Google Scholar 

  126. Badola P, Sanders CR. Escherichia coli diacylglycerol kinase is an evolutionarily optimized membrane enzyme and catalyzes direct phosphoryl transfer. J Biol Chem. 1997;272:24176–82.

    Article  PubMed  CAS  Google Scholar 

  127. Vinogradova O, Badola P, Czerski L, Sönnichsen FD, Sanders CR. Escherichia coli diacylglycerol kinase: a case study in the application of solution NMR methods to an integral membrane protein. Biophys J. 1997;72:2688–701.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Lau FW, Bowie JU. A method for assessing the stability of a membrane protein. Biochemistry. 1997;36:5884–92.

    Article  PubMed  CAS  Google Scholar 

  129. Lau FW, Chen X, Bowie JU. Active sites of diacylglycerol kinase from Escherichia coli are shared between subunits. Biochemistry. 1999;38:5521–7.

    Article  PubMed  CAS  Google Scholar 

  130. Nagy JK, Lau FW, Bowie JU, Sanders CR. Mapping the oligomeric interface of diacylglycerol kinase by engineered thiol cross-linking: homologous sites in the transmembrane domain. Biochemistry. 2000;39:4154–64.

    Article  PubMed  CAS  Google Scholar 

  131. Partridge AW, Melnyk RA, Yang D, Bowie JU, Deber CM. A transmembrane segment mimic derived from Escherichia coli diacylglycerol kinase inhibits protein activity. J Biol Chem. 2003;278:22056–60.

    Article  PubMed  CAS  Google Scholar 

  132. Hopper JTS, et al. Detergent-free mass spectrometry of membrane protein complexes. Nat Methods. 2013;10:1206.

    Article  PubMed  CAS  Google Scholar 

  133. Gorzelle BM, et al. Reconstitutive refolding of diacylglycerol kinase, an integral membrane protein. Biochemistry. 1999;38:16373–82.

    Article  PubMed  CAS  Google Scholar 

  134. Koehler J, et al. Lyso-phospholipid micelles sustain the stability and catalytic activity of diacylglycerol kinase in the absence of lipids. Biochemistry. 2010;49:7089–99.

    Article  PubMed  CAS  Google Scholar 

  135. Hutchison JM, et al. Dodecyl-beta-melibioside detergent micelles as a medium for membrane proteins. Biochemistry. 2017;56:5481–4.

    Article  PubMed  CAS  Google Scholar 

  136. Vinogradova O, Sönnichsen F, Sanders CR. On choosing a detergent for solution NMR studies of membrane proteins. J Biomol NMR. 1998;11:381–6.

    Article  PubMed  CAS  Google Scholar 

  137. Sanders CR II, Landis GC. Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry. 1995;34:4030–40.

    Article  PubMed  CAS  Google Scholar 

  138. Gorzelle BM, et al. Amphipols can support the activity of a membrane enzyme. J Am Chem Soc. 2002;124:11594–5.

    Article  PubMed  CAS  Google Scholar 

  139. Czerski L, Sanders CR. Functionality of a membrane protein in bicelles. Anal Biochem. 2000;284:327–33.

    Article  PubMed  CAS  Google Scholar 

  140. Lyons JA, et al. Structural basis for polyspecificity in the POT family of proton-coupled oligopeptide transporters. EMBO Rep. 2014;15:886–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Li D, Caffrey M. Lipid cubic phase as a membrane mimetic for integral membrane protein enzymes. Proc Natl Acad Sci USA. 2011;108:8639–44.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Boland C, et al. Cell-free expression and in meso crystallisation of an integral membrane kinase for structure determination. Cell Mol Life Sci. 2014;71:4895–910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Pilot JD, East JM, Lee AG. Effects of phospholipid headgroup and phase on the activity of diacylglycerol kinase of Escherichia coli. Biochemistry. 2001;40:14891–7.

    Article  PubMed  CAS  Google Scholar 

  144. Cherezov V, Clogston J, Papiz MZ, Caffrey M. Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J Mol Biol. 2006;357:1605–18.

    Article  PubMed  CAS  Google Scholar 

  145. Pilot JD, East JM, Lee AG. Effects of bilayer thickness on the activity of diacylglycerol kinase of Escherichia coli. Biochemistry. 2001;40:8188–95.

    Article  PubMed  CAS  Google Scholar 

  146. Buchanan SK. β-Barrel proteins from bacterial outer membranes: structure, function and refolding. Curr Opin Struct Biol. 1999;9:455–61.

    Article  PubMed  CAS  Google Scholar 

  147. Bannwarth M, Schulz GE. The expression of outer membrane proteins for crystallization. Biochim Biophys Acta (BBA) – Biomembr. 2003;1610:37–45.

    Article  CAS  Google Scholar 

  148. Tamm LK, Arora A, Kleinschmidt JH. Structure and assembly of β-barrel membrane proteins. J Biol Chem. 2001;276:32399–402.

    Article  PubMed  CAS  Google Scholar 

  149. Schulz G. E. β-Barrel membrane proteins. Curr Opin Struct Biol. 2000;10:443–7.

    Article  PubMed  CAS  Google Scholar 

  150. Li D, Lee J, Caffrey M. Crystallizing membrane proteins in lipidic mesophases. A host lipid screen. Cryst Growth Des. 2011;11:530–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Tan J, et al. A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa. Acta Crystallogr D. 2014;70:2054–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Kiefer H. In vitro folding of alpha-helical membrane proteins. Biochim Biophys Acta. 2003;1610:57–62.

    Article  PubMed  CAS  Google Scholar 

  153. Booth PJ. Folding α-helical membrane proteins: kinetic studies on bacteriorhodopsin. Fold Des. 1997;2:R85–92.

    Article  PubMed  CAS  Google Scholar 

  154. Booth PJ, et al. In vitro studies of membrane protein folding. Crit Rev Biochem Biol. 2001;36:501–603.

    Article  CAS  Google Scholar 

  155. Barrera FN, et al. Unfolding and refolding in vitro of a tetrameric, α-helical membrane protein: the prokaryotic potassium channel KcsA. Biochemistry. 2005;44:14344–52.

    Article  PubMed  CAS  Google Scholar 

  156. Walsh JP, Bell RM. sn-1,2-Diacylglycerol kinase of Escherichia coli. Mixed micellar analysis of the phospholipid cofactor requirement and divalent cation dependence. J Biol Chem. 1986;261:6239–47.

    PubMed  CAS  Google Scholar 

  157. Shenkarev ZO, et al. Lipid−protein nanodiscs as reference medium in detergent screening for high-resolution NMR studies of integral membrane proteins. J Am Chem Soc. 2010;132:5628–9.

    Article  PubMed  CAS  Google Scholar 

  158. Mi D, Kim HJ, Hadziselimovic A, Sanders CR. Irreversible misfolding of diacylglycerol kinase is independent of aggregation and occurs prior to trimerization and membrane association. Biochemistry. 2006;45:10072–84.

    Article  PubMed  CAS  Google Scholar 

  159. Nagy JK, Sanders CR. Destabilizing mutations promote membrane protein misfolding. Biochemistry. 2004;43:19–25.

    Article  PubMed  CAS  Google Scholar 

  160. Nagy JK, Sanders CR. A critical residue in the folding pathway of an integral membrane protein. Biochemistry. 2002;41:9021–5.

    Article  PubMed  CAS  Google Scholar 

  161. Van Horn WD, et al. Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science. 2009;324:1726–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Wen J, Chen X, Bowie JU. Exploring the allowed sequence space of a membrane protein. Nat Struct Biol. 1996;3:141–8.

    Article  CAS  PubMed  Google Scholar 

  163. Zhou Y, Bowie JU. Building a thermostable membrane protein. J Biol Chem. 2000;275:6975–9.

    Article  PubMed  CAS  Google Scholar 

  164. Vaidehi N, Grisshammer R, Tate CG. How can mutations thermostabilize G-protein-coupled receptors? Trends Pharmacol Sci. 2016;37:37–46.

    Article  PubMed  CAS  Google Scholar 

  165. Magnani F, et al. A mutagenesis and screening strategy to generate optimally thermostabilized membrane proteins for structural studies. Nat Protoc. 2016;11:1554.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Abdul-Hussein S, Andréll J, Tate C. Thermostabilisation of the serotonin transporter in a cocaine-bound conformation. J Mol Biol. 2013;425:2198–207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. White JF, et al. Structure of the agonist-bound neurotensin receptor. Nature. 2012;490:508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Miller-Gallacher J, Tate C. Engineering an ultra-thermostable β1-adrenoceptor. J Mol Biol. 2011;413:628–38.

    Article  CAS  Google Scholar 

  169. Lebon G, Bennett K, Jazayeri A, Tate C. Thermostabilisation of an agonist-bound conformation of the human adenosine A2A receptor. J Mol Biol. 2011;409:298–310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Serrano-Vega MJ, Magnani F, Shibata Y, Tate CG. Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form. Proc Natl Acad Sci U S A. 2008;105:877–82.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Green EM, Coleman JA, Gouaux E. Thermostabilization of the human serotonin transporter in an antidepressant-bound conformation. PLoS ONE. 2015;10:e0145688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Dürr KL, et al. Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states. Cell. 2014;158:778–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Oxenoid K, Sönnichsen FD, Sanders CR. Conformationally specific misfolding of an integral membrane protein. Biochemistry. 2001;40:5111–8.

    Article  PubMed  CAS  Google Scholar 

  174. Li D, Shah ST, Caffrey M. Host lipid and temperature as important screening variables for crystallizing integral membrane proteins in lipidic mesophases. Trials with diacylglycerol kinase. Cryst Growth Des. 2013;13:2846–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Lorch M, et al. How to prepare membrane proteins for solid-state NMR: a case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli. Chembiochem. 2005;6:1693–700.

    Article  PubMed  CAS  Google Scholar 

  176. Li D, et al. Crystallizing membrane proteins in the lipidic mesophase. Experience with human prostaglandin E2 synthase 1 and an evolving strategy. Cryst Growth Des. 2014;14:2034–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Lyons JA, et al. Structural insights into electron transfer in caa3-type cytochrome oxidase. Nature. 2012;487:514–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Rasmussen SG, et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature. 2011;477:549–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Li D, Pye VE, Caffrey M. Experimental phasing for structure determination using membrane-protein crystals grown by the lipid cubic phase method. Acta Crystallogr D. 2015;71:104–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Czerski L, Sanders CR. Thiol modification of diacylglycerol kinase: dependence upon site membrane disposition and reagent hydrophobicity. FEBS Lett. 2000;472:225–9.

    Article  PubMed  CAS  Google Scholar 

  181. Li D, et al. Ternary structure reveals mechanism of a membrane diacylglycerol kinase. Nat Commun. 2015;6:10140.

    Article  PubMed  CAS  Google Scholar 

  182. Johnson LN, Noble MEM, Owen DJ. Active and inactive protein kinases: structural basis for regulation. Cell. 1996;85:149–58.

    Article  PubMed  CAS  Google Scholar 

  183. Huang CY, et al. In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures. Acta Crystallogr D. 2016;72:93–112.

    Article  CAS  Google Scholar 

  184. Huang CY, et al. In meso in situ serial X-ray crystallography of soluble and membrane proteins. Acta Crystallogr D. 2015;71:1238–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Ma P, et al. The cubicon method for concentrating membrane proteins in the cubic mesophase. Nat Protoc. 2017;12:1745–62.

    Article  PubMed  CAS  Google Scholar 

  186. Lahiri S, Brehs M, Olschewski D, Becker CF. Total chemical synthesis of an integral membrane enzyme: diacylglycerol kinase from Escherichia coli. Angew Chem Int Ed Engl. 2011;50:3988–92.

    Article  PubMed  CAS  Google Scholar 

  187. Hutchison JM, et al. Dodecyl-β-melibioside detergent micelles as a medium for membrane proteins. Biochemistry. 2017;56:5481–4.

    Article  PubMed  CAS  Google Scholar 

  188. Jerga A, Lu YJ, Schujman GE, de Mendoza D, Rock CO. Identification of a soluble diacylglycerol kinase required for lipoteichoic acid production in Bacillus subtilis. J Biol Chem. 2007;282:21738–45.

    Article  PubMed  CAS  Google Scholar 

  189. Miller DJ, Jerga A, Rock CO, White SW. Analysis of the Staphylococcus aureus DgkB structure reveals a common catalytic mechanism for the soluble diacylglycerol kinases. Structure. 2008;16:1036–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Icho T, Bulawa CE, Raetz CR. Molecular cloning and sequencing of the gene for CDP-diglyceride hydrolase of Escherichia coli. J Biol Chem. 1985;260:12092–8.

    PubMed  CAS  Google Scholar 

  191. Sparrow CP, Raetz CR. Purification and properties of the membrane-bound CDP-diglyceride synthetase from Escherichia coli. J Biol Chem. 1985;260:12084–91.

    PubMed  CAS  Google Scholar 

  192. Ren S, et al. Structural and mechanistic insights into the biosynthesis of CDP-archaeol in membranes. Cell Res. 2017;27:1378.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  193. Chang YY, Kennedy EP. Phosphatidyl glycerophosphate phosphatase. J Lipid Res. 1967;8:456–62.

    PubMed  CAS  Google Scholar 

  194. Hirabayashi T, Larson TJ, Dowhan W. Membrane-associated phosphatidylglycerophosphate synthetase from Escherichia coli: purification by substrate affinity chromatography on cytidine 5’-diphospho-1,2-diacyl-sn-glycerol sepharose. Biochemistry. 1976;15:5205–11.

    Article  PubMed  CAS  Google Scholar 

  195. Gopalakrishnan AS, Chen YC, Temkin M, Dowhan W. Structure and expression of the gene locus encoding the phosphatidylglycerophosphate synthase of Escherichia coli. J Biol Chem. 1986;261:1329–38.

    PubMed  CAS  Google Scholar 

  196. Dowhan W, Hirabayashi T. Phosphatidylglycerophosphate synthase from Escherichia coli. Methods Enzymol. 1981;71(Pt C):555–61.

    Article  PubMed  CAS  Google Scholar 

  197. Miyazaki C, Kuroda M, Ohta A, Shibuya I. Genetic manipulation of membrane phospholipid composition in Escherichia coli: pgsA mutants defective in phosphatidylglycerol synthesis. Proc Natl Acad Sci U S A. 1985;82:7530–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Nishijima M, Raetz CR. Membrane lipid biogenesis in Escherichia coli: identification of genetic loci for phosphatidylglycerophosphate synthetase and construction of mutants lacking phosphatidylglycerol. J Biol Chem. 1979;254:7837–44.

    PubMed  CAS  Google Scholar 

  199. Usui M, Sembongi H, Matsuzaki H, Matsumoto K, Shibuya I. Primary structures of the wild-type and mutant alleles encoding the phosphatidylglycerophosphate synthase of Escherichia coli. J Bacteriol. 1994;176:3389–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Caffrey M. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr F. 2015;71:3–18.

    Article  CAS  Google Scholar 

  201. Heacock PN, Dowhan W. Construction of a lethal mutation in the synthesis of the major acidic phospholipids of Escherichia coli. J Biol Chem. 1987;262:13044–9.

    PubMed  CAS  Google Scholar 

  202. Kikuchi S, Shibuya I, Matsumoto K. Viability of an Escherichia coli pgsA null mutant lacking detectable phosphatidylglycerol and cardiolipin. J Bacteriol. 2000;182:371–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Icho T. Membrane-bound phosphatases in Escherichia coli: sequence of the pgpA gene. J Bacteriol. 1988;170:5110–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Finn RD, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44:D279–85.

    Article  PubMed  CAS  Google Scholar 

  205. Gray MJ, Escalante-Semerena JC. The cobinamide amidohydrolase (cobyric acid-forming) CbiZ enzyme: a critical activity of the cobamide remodeling system of Rhodobacter sphaeroides. Mol Microbiol. 2009;74:1198–210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Icho T. Membrane-bound phosphatases in Escherichia coli: sequence of the pgpB gene and dual subcellular localization of the pgpB product. J Bacteriol. 1988;170:5117–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Dillon DA, et al. The Escherichia coli pgpB gene encodes for a diacylglycerol pyrophosphate phosphatase activity. J Biol Chem. 1996;271:30548–53.

    Article  PubMed  CAS  Google Scholar 

  208. Touzé T, Blanot D, Mengin-Lecreulx D. Substrate specificity and membrane topology of Escherichia coli PgpB, an undecaprenyl pyrophosphate phosphatase. J Biol Chem. 2008;283:16573–83.

    Article  PubMed  CAS  Google Scholar 

  209. Gabrielsen M, et al. High-throughput identification of purification conditions leads to preliminary crystallization conditions for three inner membrane proteins. Mol Membr Biol. 2011;28:445–53.

    Article  PubMed  CAS  Google Scholar 

  210. Fan J, Jiang D, Zhao Y, Liu J, Zhang XC. Crystal structure of lipid phosphatase Escherichia coli phosphatidylglycerophosphate phosphatase B. Proc Natl Acad Sci U S A. 2014;111:7636–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Tong S, et al. Structural insight into substrate selection and catalysis of lipid phosphate phosphatase PgpB in the cell membrane. J Biol Chem. 2016;291:18342–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Funk CR, Zimniak L, Dowhan W. The pgpA and pgpB genes of Escherichia coli are not essential: evidence for a third phosphatidylglycerophosphate phosphatase. J Bacteriol. 1992;174:205–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Lu Y-H, Guan Z, Zhao J, Raetz CRH. Three phosphatidylglycerol-phosphate phosphatases in the inner membrane of Escherichia coli. J Biol Chem. 2011;286:5506–18.

    Article  PubMed  CAS  Google Scholar 

  214. Raetz CR, Larson TJ, Dowhan W. Gene cloning for the isolation of enzymes of membrane lipid synthesis: phosphatidylserine synthase overproduction in Escherichia coli. Proc Natl Acad Sci U S A. 1977;74:1412–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Louie K, Chen YC, Dowhan W. Substrate-induced membrane association of phosphatidylserine synthase from Escherichia coli. J Bacteriol. 1986;165:805–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Rilfors L, et al. Reconstituted phosphatidylserine synthase from Escherichia coli is activated by anionic phospholipids and micelle-forming amphiphiles. Biochim Biophys Acta. 1999;1438:281–94.

    Article  PubMed  CAS  Google Scholar 

  217. Larson TJ, Dowhan W. Ribosomal-associated phosphatidylserine synthetase from Escherichia coli: purification by substrate-specific elution from phosphocellulose using cytidine 5’-diphospho-1,2-diacyl-sn-glycerol. Biochemistry. 1976;15:5212–8.

    Article  PubMed  CAS  Google Scholar 

  218. Ohta A, Waggoner K, Louie K, Dowhan W. Cloning of genes involved in membrane lipid synthesis. Effects of amplification of phosphatidylserine synthase in Escherichia coli. J Biol Chem. 1981;256:2219–25.

    PubMed  CAS  Google Scholar 

  219. Raetz CRH, et al. Phospholipids chiral at phosphorus. Steric course of the reactions catalyzed by phosphatidylserine synthase from Escherichia coli and yeast. Biochemistry. 1987;26:4022–7.

    Article  PubMed  CAS  Google Scholar 

  220. DeChavigny A, Heacock PN, Dowhan W. Sequence and inactivation of the pss gene of Escherichia coli. Phosphatidylethanolamine may not be essential for cell viability. J Biol Chem. 1991;266:5323–32.

    PubMed  CAS  Google Scholar 

  221. Dowhan W, Bogdanov M. Lipid-dependent membrane protein topogenesis. Annu Rev Biochem. 2009;78:515–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Dowhan W, Wickner WT, Kennedy EP. Purification and properties of phosphatidylserine decarboxylase from Escherichia coli. J Biol Chem. 1974;249:3079–84.

    PubMed  CAS  Google Scholar 

  223. Li QX, Dowhan W. Structural characterization of Escherichia coli phosphatidylserine decarboxylase. J Biol Chem. 1988;263:11516–22.

    PubMed  CAS  Google Scholar 

  224. Li QX, Dowhan W. Studies on the mechanism of formation of the pyruvate prosthetic group of phosphatidylserine decarboxylase from Escherichia coli. J Biol Chem. 1990;265:4111–5.

    PubMed  CAS  Google Scholar 

  225. Satre M, Kennedy EP. Identification of bound pyruvate essential for the activity of phosphatidylserine decarboxylase of Escherichia coli. J Biol Chem. 1978;253:479–83.

    PubMed  CAS  Google Scholar 

  226. Choi JY, Duraisingh MT, Marti M, Ben Mamoun C, Voelker DR. From protease to decarboxylase: the molecular metamorphosis of phosphatidylserine decarboxylase. J Biol Chem. 2015;290:10972–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Schuiki I, Daum G. Phosphatidylserine decarboxylases, key enzymes of lipid metabolism. IUBMB Life. 2009;61:151–62.

    Article  PubMed  CAS  Google Scholar 

  228. Li T, Huo L, Pulley C, Liu A. Decarboxylation mechanisms in biological system. Bioorg Chem. 2012;43:2–14.

    Article  PubMed  CAS  Google Scholar 

  229. Geiger O, Lopez-Lara IM, Sohlenkamp C. Phosphatidylcholine biosynthesis and function in bacteria. Biochim Biophys Acta. 2013;1831:503–13.

    Article  PubMed  CAS  Google Scholar 

  230. de Rudder KE, Lopez-Lara IM, Geiger O. Inactivation of the gene for phospholipid N-methyltransferase in Sinorhizobium meliloti: phosphatidylcholine is required for normal growth. Mol Microbiol. 2000;37:763–72.

    Article  PubMed  Google Scholar 

  231. Conover GM, et al. Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants. Cell Microbiol. 2008;10:514–28.

    PubMed  CAS  Google Scholar 

  232. Chen F, et al. Phosphatidylcholine in membrane of Escherichia coli changes bacterial antigenicity. Can J Microbiol. 2009;55:1328–34.

    Article  PubMed  CAS  Google Scholar 

  233. Arondel V, Benning C, Somerville CR. Isolation and functional expression in Escherichia coli of a gene encoding phosphatidylethanolamine methyltransferase (EC 2.1.1.17) from Rhodobacter sphaeroides. J Biol Chem. 1993;268:16002–8.

    PubMed  CAS  Google Scholar 

  234. Vences-Guzmán MA, Geiger O, Sohlenkamp C. Sinorhizobium meliloti mutants deficient in phosphatidylserine decarboxylase accumulate phosphatidylserine and are strongly affected during symbiosis with alfalfa. J Bacteriol. 2008;190:6846–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Klüsener S, Aktas M, Thormann KM, Wessel M, Narberhaus F. Expression and physiological relevance of Agrobacterium tumefaciens phosphatidylcholine biosynthesis genes. J Bacteriol. 2009;191:365–74.

    Article  PubMed  CAS  Google Scholar 

  236. Aktas M, Narberhaus F. In vitro characterization of the enzyme properties of the phospholipid N-methyltransferase PmtA from Agrobacterium tumefaciens. J Bacteriol. 2009;191:2033–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Aktas M, Gleichenhagen J, Stoll R, Narberhaus F. S-adenosylmethionine-binding properties of a bacterial phospholipid N-methyltransferase. J Bacteriol. 2011;193:3473–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. de Rudder KE, Thomas-Oates JE, Geiger O. Rhizobium meliloti mutants deficient in phospholipid N-methyltransferase still contain phosphatidylcholine. J Bacteriol. 1997;179:6921–8.

    Article  PubMed  PubMed Central  Google Scholar 

  239. de Rudder KE, Sohlenkamp C, Geiger O. Plant-exuded choline is used for rhizobial membrane lipid biosynthesis by phosphatidylcholine synthase. J Biol Chem. 1999;274:20011–6.

    Article  PubMed  Google Scholar 

  240. Sohlenkamp C, de Rudder KEE, Röhrs V, López-Lara IM, Geiger O. Cloning and characterization of the gene for phosphatidylcholine synthase. J Biol Chem. 2000;275:18919–25.

    Article  PubMed  CAS  Google Scholar 

  241. Solis-Oviedo RL, Martinez-Morales F, Geiger O, Sohlenkamp C. Functional and topological analysis of phosphatidylcholine synthase from Sinorhizobium meliloti. Biochim Biophys Acta. 2012;1821:573–81.

    Article  PubMed  CAS  Google Scholar 

  242. Jackson M, Crick DC, Brennan PJ. Phosphatidylinositol is an essential phospholipid of mycobacteria. J Biol Chem. 2000;275:30092–9.

    Article  PubMed  CAS  Google Scholar 

  243. Morii H, Ogawa M, Fukuda K, Taniguchi H, Koga Y. A revised biosynthetic pathway for phosphatidylinositol in Mycobacteria. J Biochem. 2010;148:593–602.

    Article  PubMed  CAS  Google Scholar 

  244. Morii H, Ogawa M, Fukuda K, Taniguchi H. Ubiquitous distribution of phosphatidylinositol phosphate synthase and archaetidylinositol phosphate synthase in Bacteria and Archaea, which contain inositol phospholipid. Biochem Biophys Res Commun. 2014;443:86–90.

    Article  PubMed  CAS  Google Scholar 

  245. Deville K, et al. The oligomeric state and arrangement of the active bacterial translocon. J Biol Chem. 2011;286:4659–69.

    Article  PubMed  CAS  Google Scholar 

  246. Corey RA, et al. Identification and functional analyses of cardiolipin binding sites on the bacterial Sec translocase. In:bioRxiv; 2017.

    Google Scholar 

  247. du Plessis DJF, Nouwen N, Driessen AJM. The Sec translocase. Biochim Biophys Acta (BBA) – Biomeembr. 2011;1808:851–65.

    Article  CAS  Google Scholar 

  248. Gold VAM, et al. The action of cardiolipin on the bacterial translocon. Proc Natl Acad Sci U S A. 2010;107:10044–9.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Bernal P, Munoz-Rojas J, Hurtado A, Ramos JL, Segura A. A Pseudomonas putida cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality. Environ Microbiol. 2007;9:1135–45.

    Article  PubMed  CAS  Google Scholar 

  250. Ohta A, Obara T, Asami Y, Shibuya I. Molecular cloning of the cls gene responsible for cardiolipin synthesis in Escherichia coli and phenotypic consequences of its amplification. J Bacteriol. 1985;163:506–14.

    PubMed  PubMed Central  CAS  Google Scholar 

  251. Milija J, Lilic M, Janjusevic R, Jovanovic G, Savic DJ. tRNA synthetase mutants of Escherichia coli K-12 Are Resistant to the gyrase inhibitor novobiocin. J Bacteriol. 1999;181:2979–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  252. Ragolia L, Tropp BE. The effects of phosphoglycerides on Escherichia coli cardiolipin synthase. Biochim Biophys Acta. 1994;1214:323–32.

    Article  PubMed  Google Scholar 

  253. Quigley BR, Tropp BE. E. coli cardiolipin synthase: function of N-terminal conserved residues. Biochim Biophys Acta. 2009;1788:2107–13.

    Article  PubMed  CAS  Google Scholar 

  254. Hiraoka S, Nukui K, Uetake N, Ohta A, Shibuya I. Amplification and substantial purification of cardiolipin synthase of Escherichia coli. J Biochem. 1991;110:443–9.

    Article  PubMed  CAS  Google Scholar 

  255. Guo D, Tropp BE. A second Escherichia coli protein with CL synthase activity. Biochim Biophys Acta. 2000;1483:263–74.

    Article  PubMed  CAS  Google Scholar 

  256. Tan BK, et al. Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proc Natl Acad Sci U S A. 2012;109:16504–9.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Stuckey JA, Dixon JE. Crystal structure of a phospholipase D family member. Nat Struct Biol. 1999;6:278.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The work is supported by the 1000 Young Talent Program, the National Natural Science Foundation of China (31570748 and U1632127), the CAS-Shanghai Science Research Center (CAS-SSRC-YJ-2015-02) and Key Program of CAS Frontier Science (QYZDB-SSW-SMC037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianfan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, Y., Xia, H., Li, D. (2018). Membrane Phospholipid Biosynthesis in Bacteria. In: Cao, Y. (eds) Advances in Membrane Proteins. Springer, Singapore. https://doi.org/10.1007/978-981-13-0532-0_4

Download citation

Publish with us

Policies and ethics