Skip to main content

Drosophila Models to Investigate Insulin Action and Mechanisms Underlying Human Diabetes Mellitus

  • Chapter
  • First Online:
Drosophila Models for Human Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1076))

Abstract

Diabetes is a group of metabolic diseases in which the patient shows elevated levels of blood sugar. In healthy condition, there is the regulatory system that maintains constant glucose levels in blood. It is accomplished by two hormones, insulin and glucagon acting antagonistically. Insulin is produced in β cells in pancreas and secreted to blood. It specifically binds to its receptors on plasma membrane and activates the intracellular signaling pathways. At the end, glucose in blood are taken into the cells. The diabetes is classified into two types. In type 1 diabetes (T1D), patients’ pancreas fails to produce sufficient insulin. Hence, in type 2 diabetes (T2D), the target cells of insulin fail to respond to the hormone. The metabolic syndrome (MS) is characterized as a prediabetes showing lowered responsiveness to insulin. Drosophila has been expected to be a usefulness model animal for the diabetes researches. The regulatory system maintaining homeostasis of circulating sugar in hemolymph is highly conserved between Drosophila and mammals. Here, we summarize findings to date on insulin production and its acting mechanism essential for glucose homeostasis both in mammals and Drosophila. Subsequently, we introduce several Drosophila models for T1D, T2D, and MS. As a consequence of unique genetic approaches, new genes involved in fly’s diabetes have been identified. We compare their cellular functions with those of mammalian counterparts. At least three antidiabetic drugs showed similar effects on Drosophila. We discuss whether these Drosophila models are available for further comparative studies to comprehend the metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 197.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 197.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Altintas O, Park S, Lee SJ. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep. 2016;49:81–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aronoff SL, Berkowitz K, Shreiner B, Want L. Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectr. 2004;17:183–90.

    Article  Google Scholar 

  • Arrese EL, Soulages JL. Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol. 2010;55:207–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atkinson MA, Bluestone JA, Eisenbarth GS, Hebrok M, Herold KC, Accili D, Pietropaolo M, Arvan PR, Von Herrath M, Markel DS, Rhodes CJ. How does type 1 diabetes develop?: the notion of homicide or beta-cell suicide revisited. Diabetes. 2011;60:1370–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Avruch J. Insulin signal transduction through protein kinase cascades. Mol Cell Biochem. 1998;182:31–48.

    Article  PubMed  CAS  Google Scholar 

  • Bai H, Kang P, Tatar M. Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. Aging Cell. 2012;11:978–85.

    Article  PubMed  CAS  Google Scholar 

  • Bailey CJ, Turner RC. Metformin. N Engl J Med. 1996;334:574–9.

    Article  PubMed  CAS  Google Scholar 

  • Baker KD, Thummel CS. Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab. 2007;6:257–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benaroudj N, Lee DH, Goldberg AL. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem. 2001;276:24261–7.

    Article  PubMed  CAS  Google Scholar 

  • Birse RT, Choi J, Reardon K, Rodriguez J, Graham S, Diop S, Ocorr K, Bodmer R, Oldham S. High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab. 2010;12:533–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464:1293–300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bohni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruss BF, Beckingham K, Hafen E. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell. 1999;97:865–75.

    Article  PubMed  CAS  Google Scholar 

  • Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6:1–22.

    Article  CAS  Google Scholar 

  • Brady MJ, Bourbonais FJ, Saltiel AR. The activation of glycogen synthase by insulin switches from kinase inhibition to phosphatase activation during adipogenesis in 3T3-L1 cells. J Biol Chem. 1998;273:14063–6.

    Article  PubMed  CAS  Google Scholar 

  • Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol: CB. 2001;11:213–21.

    Article  PubMed  CAS  Google Scholar 

  • Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, Driege Y, Martinez P, Hafen E, Withers DJ, Leevers SJ, Partridge L. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A. 2005;102:3105–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao J, Ni J, Ma W, Shiu V, Milla LA, Park S, Spletter ML, Tang S, Zhang J, Wei X, Kim SK, Scott MP. Insight into insulin secretion from transcriptome and genetic analysis of insulin-producing cells of Drosophila. Genetics. 2014;197:175–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ceddia RB, Bikopoulos GJ, Hilliker AJ, Sweeney G. Insulin stimulates glucose metabolism via the pentose phosphate pathway in Drosophila Kc cells. FEBS Lett. 2003;555:307–10.

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Jack J, Garofalo RS. The Drosophila insulin receptor is required for normal growth. Endocrinology. 1996;137:846–56.

    Article  PubMed  CAS  Google Scholar 

  • Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science (N Y). 2001;292:104–6.

    Article  CAS  Google Scholar 

  • Cognigni P, Bailey AP, Miguel-Aliaga I. Enteric neurons and systemic signals couple nutritional and reproductive status with intestinal homeostasis. Cell Metab. 2011;13:92–104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, Leopold P. A nutrient sensor mechanism controls Drosophila growth. Cell. 2003;114:739–49.

    Article  PubMed  CAS  Google Scholar 

  • Colombani J, Andersen DS, Leopold P. Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science (N Y). 2012;336:582–5.

    Article  CAS  Google Scholar 

  • Colombani J, Andersen DS, Boulan L, Boone E, Romero N, Virolle V, Texada M, Leopold P. Drosophila Lgr3 couples organ growth with maturation and ensures developmental stability. Curr Biol: CB. 2015;25:2723–9.

    Article  PubMed  CAS  Google Scholar 

  • David B, Mervyn S. Hyperglycemia in critical illness: a review. J Diabetes Sci Technol. 2009;3:1250–60.

    Article  Google Scholar 

  • de Lencastre A, Pincus Z, Zhou K, Kato M, Lee SS, Slack FJ. MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol: CB. 2010;20:2159–68.

    Article  PubMed  CAS  Google Scholar 

  • DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC, Testa MA, Weiss R. Type 2 diabetes mellitus. Nat Rev Dis Prim. 2015;1:15019.

    Article  PubMed  Google Scholar 

  • Demontis F, Perrimon N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell. 2010;143:813–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dimas AS, Lagou V, Barker A, Knowles JW, Magi R, Hivert MF, Benazzo A, Rybin D, et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes. 2014;63:2158–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, Wheeler E, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42:105–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duvillie B, Cordonnier N, Deltour L, Dandoy-Dron F, Itier JM, Monthioux E, Jami J, Joshi RL, Bucchini D. Phenotypic alterations in insulin-deficient mutant mice. Proc Natl Acad Sci U S A. 1997;94:5137–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol. 2009;5:219–26.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez R, Tabarini D, Azpiazu N, Frasch M, Schlessinger J. The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. EMBO J. 1995;14:3373–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrannini E. The stunned beta cell: a brief history. Cell Metab. 2010;11:349–52.

    Article  PubMed  CAS  Google Scholar 

  • Friedman DB, Johnson TE. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics. 1988;118:75–86.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fuller MT, Spradling AC. Male and female Drosophila germline stem cells: two versions of immortality. Science (N Y). 2007;316:402–4.

    Article  CAS  Google Scholar 

  • Garelli A, Gontijo AM, Miguela V, Caparros E, Dominguez M. Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation. Science (N Y). 2012;336:579–82.

    Article  CAS  Google Scholar 

  • Gavi S, Stuart LM, Kelly P, Melendez MM, Mynarcik DC, Gelato MC, McNurlan MA. Retinol-binding protein 4 is associated with insulin resistance and body fat distribution in nonobese subjects without type 2 diabetes. J Clin Endocrinol Metab. 2007;92:1886–90.

    Article  PubMed  CAS  Google Scholar 

  • Gronke S, Clarke DF, Broughton S, Andrews TD, Partridge L. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 2010;6:e1000857.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutierrez E, Wiggins D, Fielding B, Gould AP. Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature. 2007;445:275–80.

    Article  PubMed  CAS  Google Scholar 

  • Hanafusa T, Imagawa A. Fulminant type 1 diabetes: a novel clinical entity requiring special attention by all medical practitioners. Nat Clin Pract Endocrinol Metab. 2007;3:36–45; quiz 32p following 69

    Article  PubMed  CAS  Google Scholar 

  • Haselton AT, Fridell YW. Adult Drosophila melanogaster as a model for the study of glucose homeostasis. Aging. 2010;2:523–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haselton A, Sharmin E, Schrader J, Sah M, Poon P, Fridell YW. Partial ablation of adult Drosophila insulin-producing neurons modulates glucose homeostasis and extends life span without insulin resistance. Cell Cycle .(Georgetown, Tex. 2010;9:3063–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoffmann J, Romey R, Fink C, Roeder T. Drosophila as a model to study metabolic disorders. Adv Biochem Eng Biotechnol. 2013;135:41–61.

    PubMed  CAS  Google Scholar 

  • Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;421:182–7.

    Article  PubMed  CAS  Google Scholar 

  • Hsu HJ, Drummond-Barbosa D. Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proc Natl Acad Sci U S A. 2009;106:1117–21. https://doi.org/10.1073/pnas.0809144106.

    Article  Google Scholar 

  • Huang CW, Wang HD, Bai H, Wu MS, Yen JH, Tatar M, Fu TF, Wang PY. Tequila regulates insulin-like signaling and extends life span in Drosophila melanogaster. J Gerontol A Biol Sci Med Sci. 2015;70:1461–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ikeya T, Galic M, Belawat P, Nairz K, Hafen E. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol: CB. 2002;12:1293–300.

    Article  PubMed  CAS  Google Scholar 

  • Inaba M, Yuan H, Salzmann V, Fuller MT, Yamashita YM. E-cadherin is required for centrosome and spindle orientation in Drosophila male germline stem cells. PLoS One. 2010;5:e12473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inoue YH, Miyauchi C, Ogata T, Kitazawa D. Dynamics of cellular components in meiotic and premeiotic divisions in Drosophila males. In: Swan A, editor. Meiosis – molecular mechanisms and cytogenetic diversity. Rijeka: InTech. Open Access Publisher; 2012. p. 67–86.

    Google Scholar 

  • Jewell JL, Oh E, Ramalingam L, Kalwat MA, Tagliabracci VS, Tackett L, Elmendorf JS, Thurmond DC. Munc18c phosphorylation by the insulin receptor links cell signaling directly to SNARE exocytosis. J Cell Biol. 2011;193:185–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang S, Fang Q, Zhang F, Wan H, Zhang R, Wang C, Bao Y, Zhang L, Ma X, Lu J, Gao F, Xiang K, Jia W. Functional characterization of insulin receptor gene mutations contributing to Rabson-Mendenhall syndrome – phenotypic heterogeneity of insulin receptor gene mutations. Endocr J. 2011;58:931–40.

    Article  PubMed  CAS  Google Scholar 

  • Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16:3–34.

    PubMed  CAS  Google Scholar 

  • Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol. 2001;18:247–56.

    Article  PubMed  CAS  Google Scholar 

  • Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet (Lond). 2014;383:1068–83.

    Article  CAS  Google Scholar 

  • Kannan K, Fridell YWC. Functional implications of Drosophila insulin-like peptides in metabolism, aging, and dietary restriction. Front Physiol. 2013;4:288.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasuga M. Insulin resistance and pancreatic beta cell failure. J Clin Invest. 2006;116:1756–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, Jacobsen LM, Schatz DA, Lernmark Å. Type 1 diabetes mellitus. Nat Rev Dis Prim. 2017;3:17016.

    Article  PubMed  Google Scholar 

  • Kim SK, Rulifson EJ. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature. 2004;431:316–20.

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Lee JH, Koh H, Lee SY, Jang C, Chung CJ, Sung JH, Blenis J, Chung J. Inhibition of ERK-MAP kinase signaling by RSK during Drosophila development. EMBO J. 2006;25:3056–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim YL, Kim TK, Cheong ES, Shin DG, Choi GS, Jung J, Han KA, Min KW. Relation of absolute or relative adiposity to insulin resistance, retinol binding protein-4, leptin, and adiponectin in type 2 diabetes. Diabetes Metab J. 2012;36:415–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J, Lee HY, Ahn J, Hyun M, Lee I, Min KJ, You YJ. NHX-5, an endosomal Na+/H+ exchanger, is associated with metformin action. J Biol Chem. 2016;291:18591–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kreneisz O, Chen X, Fridell YW, Mulkey DK. Glucose increases activity and Ca2+ in insulin-producing cells of adult Drosophila. Neuroreport. 2010;21:1116–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • La Fever L, Drummond-Barbosa D. Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science. 2005;309:1071–3.

    Article  PubMed  CAS  Google Scholar 

  • Lee G, Park JH. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics. 2004;167:311–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee J, Pilch PF. The insulin receptor: structure, function, and signaling. Am J Phys. 1994;266:C319–34.

    Article  CAS  Google Scholar 

  • Li YM, Chan HY, Huang Y, Chen ZY. Green tea catechins upregulate superoxide dismutase and catalase in fruit flies. Mol Nutr Food Res. 2007;51:546–54.

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Sun J, Cui J, Chen W, Guo H, Barbetti F, Arvan P. INS-gene mutations: from genetics and beta cell biology to clinical disease. Mol Asp Med. 2015;42:3–18.

    Article  CAS  Google Scholar 

  • Lizcano JM, Alessi DR. The insulin signalling pathway. Curr Biol: CB. 2002;12:R236–8.

    Article  PubMed  CAS  Google Scholar 

  • Lochhead PA, Coghlan M, Rice SQ, Sutherland C. Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphatase and phosphoenolypyruvate carboxykinase gene expression. Diabetes. 2001;50:937–46.

    Article  PubMed  CAS  Google Scholar 

  • Meur G, Simon A, Harun N, Virally M, Dechaume A, Bonnefond A, Fetita S, Tarasov AI, Guillausseau PJ, Boesgaard TW, Pedersen O, Hansen T, Polak M, Gautier JF, Froguel P, Rutter GA, Vaxillaire M. Insulin gene mutations resulting in early-onset diabetes: marked differences in clinical presentation, metabolic status, and pathogenic effect through endoplasmic reticulum retention. Diabetes. 2010;59:653–61.

    Article  PubMed  CAS  Google Scholar 

  • Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell. 2000;6:87–97.

    Article  PubMed  CAS  Google Scholar 

  • Miguel-Aliaga I, Thor S, Gould AP. Postmitotic specification of Drosophila insulinergic neurons from pioneer neurons. PLoS Biol. 2008;6:e58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morris SN, Coogan C, Chamseddin K, Fernandez-Kim SO, Kolli S, Keller JN, Bauer JH. Development of diet-induced insulin resistance in adult Drosophila melanogaster. Biochim Biophys Acta. 2012;1822:1230–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Musselman LP, Fink JL, Narzinski K, Ramachandran PV, Hathiramani SS, Cagan RL, Baranski TJ. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis Model Mech. 2011;4:842–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Na J, Musselman LP, Pendse J, Baranski TJ, Bodmer R, Ocorr K, Cagan R. A Drosophila model of high sugar diet-induced cardiomyopathy. PLoS Genet. 2013;9:e1003175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakae J, Kitamura T, Silver DL, Accili D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest. 2001;108:1359–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nandi A, Wang X, Accili D, Wolgemuth DJ. The effect of insulin signaling on female reproductive function independent of adiposity and hyperglycemia. Endocrinology. 2010;151:1863–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nation JL. Insect physiology and biochemistry. Boca Raton: CRC Press LLC; 2002.

    Google Scholar 

  • Nishida Y, Hata M, Nishizuka Y, Rutter WJ, Ebina Y. Cloning of a Drosophila cDNA encoding a polypeptide similar to the human insulin receptor precursor. Biochem Biophys Res Commun. 1986;141:474–81.

    Article  PubMed  CAS  Google Scholar 

  • Nogueira TC, Paula FM, Villate O, Colli ML, Moura RF, Cunha DA, Marselli L, Marchetti P, Cnop M, Julier C, Eizirik DL. GLIS3, a susceptibility gene for type 1 and type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of a splice variant of the BH3-only protein Bim. PLoS Genet. 2013;9:e1003532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Brien LE, Soliman SS, Li X, Bilder D. Altered modes of stem cell division drive adaptive intestinal growth. Cell. 2011;147:603–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okamoto N, Yamanaka N, Yagi Y, Nishida Y, Kataoka H, O’Connor MB, Mizoguchi A. A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila. Dev Cell. 2009;17:885–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osterwalder T, Yoon KS, White BH, Keshishian H. A conditional tissue-specific transgene expression system using inducible GAL4. Proc Natl Acad Sci. 2001;98:12596–601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Owusu-Ansah E, Perrimon N. Modeling metabolic homeostasis and nutrient sensing in Drosophila: implications for aging and metabolic diseases. Dis Model Mech. 2014;7:343–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev. 2011;63:411–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park S, Alfa RW, Topper SM, Kim GE, Kockel L, Kim SK. A genetic strategy to measure circulating Drosophila insulin reveals genes regulating insulin production and secretion. PLoS Genet. 2014a;10:e1004555.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park SY, Ludwig MZ, Tamarina NA, He BZ, Carl SH, Dickerson DA, Barse L, Arun B, Williams CL, Miles CM, Philipson LH, Steiner DF, Bell GI, Kreitman M. Genetic complexity in a Drosophila model of diabetes-associated misfolded human proinsulin. Genetics. 2014b;196:539–55.

    Article  PubMed  CAS  Google Scholar 

  • Pasco MY, Leopold P. High sugar-induced insulin resistance in Drosophila relies on the lipocalin neural Lazarillo. PLoS One. 2012;7:e36583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pendse J, Ramachandran PV, Na J, Narisu N, Fink JL, Cagan RL, Collins FS, Baranski TJ. A Drosophila functional evaluation of candidates from human genome-wide association studies of type 2 diabetes and related metabolic traits identifies tissue-specific roles for dHHEX. BMC Genomics. 2013;14:136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phelps CB, Brand AH. Ectopic gene expression in Drosophila using GAL4 system. Methods (San Diego). 1998;14:367–79.

    Article  CAS  Google Scholar 

  • Renstrom F, Payne F, Nordstrom A, Brito EC, Rolandsson O, Hallmans G, Barroso I, Nordstrom P, Franks PW. Replication and extension of genome-wide association study results for obesity in 4923 adults from northern Sweden. Hum Mol Genet. 2009;18:1489–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rulifson EJ, Kim SK, Nusse R. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science (N Y). 2002;296:1118–20.

    Article  CAS  Google Scholar 

  • Rutter GA, Pullen TJ, Hodson DJ, Martinez-Sanchez A. Pancreatic beta-cell identity, glucose sensing and the control of insulin secretion. Biochem J. 2015;466:203–18.

    Article  PubMed  CAS  Google Scholar 

  • Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414:799–806.

    Article  PubMed  CAS  Google Scholar 

  • Sola D, Rossi L, Schianca GP, Maffioli P, Bigliocca M, Mella R, Corliano F, Fra GP, Bartoli E, Derosa G. Sulfonylureas and their use in clinical practice. Arch Med Sci: AMS. 2015;11:840–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song W, Ren D, Li W, Jiang L, Cho KW, Huang P, Fan C, Song Y, Liu Y, Rui L. SH2B regulation of growth, metabolism, and longevity in both insects and mammals. Cell Metab. 2010;11:427–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sousa-Nunes R, Yee LL, Gould AP. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature. 2011;471:508–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sreenan S, Pick AJ, Levisetti M, Baldwin AC, Pugh W, Polonsky KS. Increased beta-cell proliferation and reduced mass before diabetes onset in the nonobese diabetic mouse. Diabetes. 1999;48:989–96.

    Article  PubMed  CAS  Google Scholar 

  • Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science (N Y). 2001;292:107–10.

    Article  CAS  Google Scholar 

  • Teleman AA, Chen YW, Cohen SM. Drosophila melted modulates FOXO and TOR activity. Dev Cell. 2005;9:271–81.

    Article  PubMed  CAS  Google Scholar 

  • Teleman AA, Maitra S, Cohen SM. Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev. 2006;20:417–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tulina N, Matunis E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science (N Y). 2001;294:2546–9.

    Article  CAS  Google Scholar 

  • Ueda M, Sato T, Ohkawa Y, Inoue YH. Identification of miR-305, a microRNA that promotes aging, and its target mRNAs in Drosophila. Genes Cells Devot Mol Cell Mech. 2018;23:80–93.

    Article  CAS  Google Scholar 

  • Ueishi S, Shimizu H, Inoue YH. Male germline stem cell division and spermatocyte growth require insulin signaling in Drosophila. Cell Struct Funct. 2009;34:61–9.

    Article  PubMed  Google Scholar 

  • Ugrankar R, Berglund E, Akdemir F, Tran C, Kim MS, Noh J, Schneider R, Ebert B, Graff JM. Drosophila glucome screening identifies Ck1alpha as a regulator of mammalian glucose metabolism. Nat Commun. 2015;6:7102.

    Article  PubMed  Google Scholar 

  • Vallejo DM, Juarez-Carreno S, Bolivar J, Morante J, Dominguez M. A brain circuit that synchronizes growth and maturation revealed through Dilp8 binding to Lgr3. Science (N Y). 2015;350:aac6767.

    Article  CAS  Google Scholar 

  • Van Obberghen E, Baron V, Delahaye L, Emanuelli B, Filippa N, Giorgetti-Peraldi S, Lebrun P, Mothe-Satney I, Peraldi P, Rocchi S, Sawka-Verhelle D, Tartare-Deckert S, Giudicelli J. Surfing the insulin signaling web. Eur J Clin Investig. 2001;31:966–77.

    Article  Google Scholar 

  • van Vliet-Ostaptchouk JV, Onland-Moret NC, van Haeften TW, Franke L, Elbers CC, Shiri-Sverdlov R, van der Schouw YT, Hofker MH, Wijmenga C. HHEX gene polymorphisms are associated with type 2 diabetes in the Dutch Breda cohort. Eur J Hum Genet: EJHG. 2008;16:652–6.

    Article  PubMed  CAS  Google Scholar 

  • Varghese J, Lim SF, Cohen SM. Drosophila miR-14 regulates insulin production and metabolism through its target, sugarbabe. Genes Dev. 2010;24:2748–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veenstra JA, Agricola HJ, Sellami A. Regulatory peptides in fruit fly midgut. Cell Tissue Res. 2008;334:499–516.

    Article  PubMed  CAS  Google Scholar 

  • Wagner AE, Piegholdt S, Rabe D, Baenas N, Schloesser A, Eggersdorfer M, Stocker A, Rimbach G. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster. Oncotarget. 2015;6:30568–78.

    PubMed  PubMed Central  Google Scholar 

  • Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999;104:787–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005;26:19–39.

    PubMed  PubMed Central  Google Scholar 

  • World Health Organization. (2016). Global report on diabetes. ISBN: 978 92 41565257.

    Google Scholar 

  • Wu Q, Brown MR. Signaling and function of insulin-like peptides in insects. Annu Rev Entomol. 2006;51:1–24.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita YM. Asymmetric centrosome behavior and the mechanisms of stem cell division. J Cell Biol. 2008;180:261–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamashita YM1, Jones DL, Fuller MT. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science. 2003;301:1547–50.

    Article  PubMed  CAS  Google Scholar 

  • Yang CH, Belawat P, Hafen E, Jan LY, Jan YN. Drosophila egg-laying site selection as a system to study simple decision-making processes. Science (N Y). 2008;319:1679–83.

    Article  CAS  Google Scholar 

  • Yang Y, Chang BH, Samson SL, Li MV, Chan L. The Kruppel-like zinc finger protein Glis3 directly and indirectly activates insulin gene transcription. Nucleic Acids Res. 2009;37:2529–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Liu J, Li CR, Momen B, Kohanski RA, Pick L. Deletion of Drosophila insulin-like peptides causes growth defects and metabolic abnormalities. Proc Natl Acad Sci U S A. 2009;106:19617–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Thompson BJ, Hietakangas V, Cohen SM. MAPK/ERK signaling regulates insulin sensitivity to control glucose metabolism in Drosophila. PLoS Genet. 2011;7:e1002429.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by Grant-in-Aid for Scientific Research C (#20570003) and grant for research project in health sciences which utilize advanced insect science in the Kyoto Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro H. Inoue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Inoue, Y.H., Katsube, H., Hinami, Y. (2018). Drosophila Models to Investigate Insulin Action and Mechanisms Underlying Human Diabetes Mellitus. In: Yamaguchi, M. (eds) Drosophila Models for Human Diseases. Advances in Experimental Medicine and Biology, vol 1076. Springer, Singapore. https://doi.org/10.1007/978-981-13-0529-0_13

Download citation

Publish with us

Policies and ethics