Advertisement

Molecular Defects in the DM Central Nervous System

  • Takashi KimuraEmail author
Chapter
  • 312 Downloads

Abstract

The central nervous manifestation of myotonic dystrophy (DM) is one of the most devastating features of this disorder, along with muscle- and heart-related symptoms. Neuropathologically, neurofibrillary degeneration accompanying hyperphosphorylated microtubule-associated tau and C(C)UG nucleotide repeat accumulation in the nucleus are observed in DM brains. CTG repeat is the longest in the cerebral cortex of DM type 1 but the shortest in the cerebellum. Non-replication processes, including transcription and repair after DNA damage, may play significant roles in repeat expansion in the central nervous system because neurons are non-mitotic. Mismatch repair protein as a trans-factor and abnormal methylation at the CTCF binding site upstream of the CTG repeat as a cis-element have been postulated as the causes of somatic instability. Because C(C)TG repeat expansion occurs in noncoding regions, the transcripts exert a toxic effect, mainly through an RNA gain-of-function mechanism. Expanded C(C)UG repeat transcripts are accumulated in the nuclei of the brain of DM patients (foci). These RNA foci sequester RNA-binding proteins MBNL1 and MBNL2, which normally regulate the splicing transition from fetal to adult isoforms, and this sequestration in the nuclei of neuronal cells leads to the retention of fetal transcripts. Although Mbnl1 knockout mice displayed DM skeletal muscle phenotypes, they only exhibit mild splicing changes in the brain. On the contrary, Mbnl2 knockout mice showed DM-CNS symptoms, indicating a major role of MBNL2 in the DM brain. However, loss of functions of both Mbnl1 and Mbnl2, demonstrated by conditional double-knockout mice, leads to dramatic splicing switch to fetal patterns, including Mapt that encodes Tau proteins. These molecular defects may contribute to synaptic dysfunction and Tau-related toxicity in the DM brain. Based on these evidences, therapeutic approaches are being tested at different levels, including clinical trials.

Keywords

Myotonic dystrophy Central nervous system MBNL CELF MAPT Alternative splicing RNA-mediated disease 

Notes

Acknowledgment

I would like to thank Dr. Kuang-Yung Lee (Chang Gung Memorial Hospital, Keelung, Taiwan) for his comments regarding the manuscript.

References

  1. 1.
    Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science. 2001;293(5531):864–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Meola G, Sansone V. Cerebral involvement in myotonic dystrophies. Muscle Nerve. 2007;36(3):294–306.PubMedCrossRefGoogle Scholar
  3. 3.
    Angeard N, Gargiulo M, Jacquette A, Radvanyi H, Eymard B, Heron D. Cognitive profile in childhood myotonic dystrophy type 1: is there a global impairment? Neuromuscul Disord. 2007;17(6):451–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Ekstrom AB, Hakenas-Plate L, Samuelsson L, Tulinius M, Wentz E. Autism spectrum conditions in myotonic dystrophy type 1: a study on 57 individuals with congenital and childhood forms. Am J Med Genet B Neuropsychiatr Genet. 2008;147b(6):918–26.PubMedCrossRefGoogle Scholar
  5. 5.
    Ekstrom AB, Hakenas-Plate L, Tulinius M, Wentz E. Cognition and adaptive skills in myotonic dystrophy type 1: a study of 55 individuals with congenital and childhood forms. Dev Med Child Neurol. 2009;51(12):982–90.PubMedCrossRefGoogle Scholar
  6. 6.
    Gourdon G, Meola G. Myotonic dystrophies: state of the art of new therapeutic developments for the CNS. Front Cell Neurosci. 2017;11:101.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Douniol M, Jacquette A, Cohen D, Bodeau N, Rachidi L, Angeard N, et al. Psychiatric and cognitive phenotype of childhood myotonic dystrophy type 1. Dev Med Child Neurol. 2012;54(10):905–11.PubMedCrossRefGoogle Scholar
  8. 8.
    Delacourte A, David JP, Sergeant N, Buee L, Wattez A, Vermersch P, et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology. 1999;52(6):1158–65.PubMedCrossRefGoogle Scholar
  9. 9.
    Itoh K, Mitani M, Kawamoto K, Futamura N, Funakawa I, Jinnai K, et al. Neuropathology does not correlate with regional differences in the extent of expansion of CTG repeats in the brain with myotonic dystrophy type 1. Acta Histochem Cytochem. 2010;43(6):149–56.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Maurage CA, Udd B, Ruchoux MM, Vermersch P, Kalimo H, Krahe R, et al. Similar brain tau pathology in DM2/PROMM and DM1/Steinert disease. Neurology. 2005;65(10):1636–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Vermersch P, Sergeant N, Ruchoux MM, Hofmann-Radvanyi H, Wattez A, Petit H, et al. Specific tau variants in the brains of patients with myotonic dystrophy. Neurology. 1996;47(3):711–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Yoshimura N, Otake M, Igarashi K, Matsunaga M, Takebe K, Kudo H. Topography of Alzheimer’s neurofibrillary change distribution in myotonic dystrophy. Clin Neuropathol. 1990;9(5):234–9.PubMedGoogle Scholar
  13. 13.
    Censori B, Provinciali L, Danni M, Chiaramoni L, Maricotti M, Foschi N, et al. Brain involvement in myotonic dystrophy: MRI features and their relationship to clinical and cognitive conditions. Acta Neurol Scand. 1994;90(3):211–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Di Costanzo A, Di Salle F, Santoro L, Bonavita V, Tedeschi G. Brain MRI features of congenital- and adult-form myotonic dystrophy type 1: case-control study. Neuromuscul Disord. 2002;12(5):476–83.PubMedCrossRefGoogle Scholar
  15. 15.
    Hashimoto T, Tayama M, Miyazaki M, Murakawa K, Kawai H, Nishitani H, et al. Neuroimaging study of myotonic dystrophy. I. Magnetic resonance imaging of the brain. Brain Dev. 1995;17(1):24–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Huber SJ, Kissel JT, Shuttleworth EC, Chakeres DW, Clapp LE, Brogan MA. Magnetic resonance imaging and clinical correlates of intellectual impairment in myotonic dystrophy. Arch Neurol. 1989;46(5):536–40.PubMedCrossRefGoogle Scholar
  17. 17.
    Kornblum C, Reul J, Kress W, Grothe C, Amanatidis N, Klockgether T, et al. Cranial magnetic resonance imaging in genetically proven myotonic dystrophy type 1 and 2. J Neurol. 2004;251(6):710–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Antonini G, Mainero C, Romano A, Giubilei F, Ceschin V, Gragnani F, et al. Cerebral atrophy in myotonic dystrophy: a voxel based morphometric study. J Neurol Neurosurg Psychiatry. 2004;75(11):1611–3.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Baldanzi S, Cecchi P, Fabbri S, Pesaresi I, Simoncini C, Angelini C, et al. Relationship between neuropsychological impairment and grey and white matter changes in adult-onset myotonic dystrophy type 1. Neuroimage Clin. 2016;12:190–7.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Cabada T, Iridoy M, Jerico I, Lecumberri P, Seijas R, Gargallo A, et al. Brain involvement in myotonic dystrophy type 1: a morphometric and diffusion tensor imaging study with neuropsychological correlation. Arch Clin Neuropsychol. 2017;32(4):401–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Caso F, Agosta F, Peric S, Rakocevic-Stojanovic V, Copetti M, Kostic VS, et al. Cognitive impairment in myotonic dystrophy type 1 is associated with white matter damage. PLoS One. 2014;9(8):e104697.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Franc DT, Muetzel RL, Robinson PR, Rodriguez CP, Dalton JC, Naughton CE, et al. Cerebral and muscle MRI abnormalities in myotonic dystrophy. Neuromuscul Disord. 2012;22(6):483–91.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Fukuda H, Horiguchi J, Ono C, Ohshita T, Takaba J, Ito K. Diffusion tensor imaging of cerebral white matter in patients with myotonic dystrophy. Acta Radiol. 2005;46(1):104–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Minnerop M, Weber B, Schoene-Bake J-C, Roeske S, Mirbach S, Anspach C, et al. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease. Brain. 2011;134(12):3530–46.PubMedCrossRefGoogle Scholar
  25. 25.
    Ota M, Sato N, Ohya Y, Aoki Y, Mizukami K, Mori T, et al. Relationship between diffusion tensor imaging and brain morphology in patients with myotonic dystrophy. Neurosci Lett. 2006;407(3):234–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Schneider-Gold C, Bellenberg B, Prehn C, Krogias C, Schneider R, Klein J, et al. Cortical and subcortical Grey and white matter atrophy in myotonic dystrophies type 1 and 2 is associated with cognitive impairment, depression and daytime sleepiness. PLoS One. 2015;10(6):e0130352.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Serra L, Petrucci A, Spano B, Torso M, Olivito G, Lispi L, et al. How genetics affects the brain to produce higher-level dysfunctions in myotonic dystrophy type 1. Funct Neurol. 2015;30(1):21–31.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Wozniak JR, Mueller BA, Lim KO, Hemmy LS, Day JW. Tractography reveals diffuse white matter abnormalities in myotonic dystrophy type 1. J Neurol Sci. 2014;341(1–2):73–8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Zanigni S, Evangelisti S, Giannoccaro MP, Oppi F, Poda R, Giorgio A, et al. Relationship of white and gray matter abnormalities to clinical and genetic features in myotonic dystrophy type 1. Neuroimage Clin. 2016;11:678–85.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Okkersen K, Monckton DG, Le N, Tuladhar AM, Raaphorst J, van Engelen BGM. Brain imaging in myotonic dystrophy type 1: a systematic review. Neurology. 2017;89:960–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Pearson CE, Nichol Edamura K, Cleary JD. Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet. 2005;6(10):729–42.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Martorell L, Johnson K, Boucher CA, Baiget M. Somatic instability of the myotonic dystrophy (CTG)n repeat during human fetal development. Hum Mol Genet. 1997;6(6):877–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Ishii S, Nishio T, Sunohara N, Yoshihara T, Takemura K, Hikiji K, et al. Small increase in triplet repeat length of cerebellum from patients with myotonic dystrophy. Hum Genet. 1996;98(2):138–40.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Korade-Mirnics Z, Tarleton J, Servidei S, Casey RR, Gennarelli M, Pegoraro E, et al. Myotonic dystrophy: tissue-specific effect of somatic CTG expansions on allele-specific DMAPH/SIX5 expression. Hum Mol Genet. 1999;8(6):1017–23.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Gennarelli M, Pavoni M, Amicucci P, Angelini C, Menegazzo E, Zelano G, et al. Reduction of the DM-associated homeo domain protein (DMAHP) mRNA in different brain areas of myotonic dystrophy patients. Neuromuscul Disord. 1999;9(4):215–9.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Telenius H, Kremer B, Goldberg YP, Theilmann J, Andrew SE, Zeisler J, et al. Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nat Genet. 1994;6(4):409–14.PubMedCrossRefGoogle Scholar
  37. 37.
    Aoki M, Abe K, Tobita M, Kameya T, Watanabe M, Itoyama Y. Reduction of CAG expansions in cerebellar cortex and spinal cord of DRPLA. Clin Genet. 1996;50(4):199–201.PubMedCrossRefGoogle Scholar
  38. 38.
    Tanaka F, Sobue G, Doyu M, Ito Y, Yamamoto M, Shimada N, et al. Differential pattern in tissue-specific somatic mosaicism of expanded CAG trinucleotide repeats in dentatorubral-pallidoluysian atrophy, Machado-Joseph disease, and X-linked recessive spinal and bulbar muscular atrophy. J Neurol Sci. 1996;135(1):43–50.PubMedCrossRefGoogle Scholar
  39. 39.
    De Rooij KE, De Koning Gans PA, Roos RA, Van Ommen GJ, Den Dunnen JT. Somatic expansion of the (CAG)n repeat in Huntington disease brains. Hum Genet. 1995;95(3):270–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Thornton CA, Johnson K, Moxley RT III. Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes. Ann Neurol. 1994;35(1):104–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Zatz M, Passos-Bueno MR, Cerqueira A, Marie SK, Vainzof M, Pavanello RC. Analysis of the CTG repeat in skeletal muscle of young and adult myotonic dystrophy patients: when does the expansion occur? Hum Mol Genet. 1995;4(3):401–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Savouret C, Brisson E, Essers J, Kanaar R, Pastink A, te Riele H, et al. CTG repeat instability and size variation timing in DNA repair-deficient mice. EMBO J. 2003;22(9):2264–73.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    van den Broek WJ, Nelen MR, Wansink DG, Coerwinkel MM, te Riele H, Groenen PJ, et al. Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum Mol Genet. 2002;11(2):191–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Wheeler VC, Lebel LA, Vrbanac V, Teed A, te Riele H, MacDonald ME. Mismatch repair gene Msh2 modifies the timing of early disease in Hdh(Q111) striatum. Hum Mol Genet. 2003;12(3):273–81.PubMedCrossRefGoogle Scholar
  45. 45.
    Manley K, Shirley TL, Flaherty L, Messer A. Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nat Genet. 1999;23(4):471–3.PubMedCrossRefGoogle Scholar
  46. 46.
    Lopez Castel A, Cleary JD, Pearson CE. Repeat instability as the basis for human diseases and as a potential target for therapy. Nat Rev Mol Cell Biol. 2010;11(3):165–70.PubMedCrossRefGoogle Scholar
  47. 47.
    Gonitel R, Moffitt H, Sathasivam K, Woodman B, Detloff PJ, Faull RL, et al. DNA instability in postmitotic neurons. Proc Natl Acad Sci U S A. 2008;105(9):3467–72.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Nakatani R, Nakamori M, Fujimura H, Mochizuki H, Takahashi MP. Large expansion of CTG*CAG repeats is exacerbated by MutSbeta in human cells. Sci Rep. 2015;5:11020.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6(8):597–610.PubMedCrossRefGoogle Scholar
  50. 50.
    Filippova GN, Thienes CP, Penn BH, Cho DH, Hu YJ, Moore JM, et al. CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nat Genet. 2001;28(4):335–43.PubMedCrossRefGoogle Scholar
  51. 51.
    Steinbach P, Glaser D, Vogel W, Wolf M, Schwemmle S. The DMPK gene of severely affected myotonic dystrophy patients is hypermethylated proximal to the largely expanded CTG repeat. Am J Hum Genet. 1998;62(2):278–85.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lopez Castel A, Nakamori M, Tome S, Chitayat D, Gourdon G, Thornton CA, et al. Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues. Hum Mol Genet. 2011;20(1):1–15.PubMedCrossRefGoogle Scholar
  53. 53.
    Taneja KL, McCurrach M, Schalling M, Housman D, Singer RH. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J Cell Biol. 1995;128(6):995–1002.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Mankodi A, Logigian E, Callahan L, McClain C, White R, Henderson D, et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science. 2000;289(5485):1769–73.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Cardani R, Mancinelli E, Saino G, Bonavina L, Meola G. A putative role of ribonuclear inclusions and MBNL1 in the impairment of gallbladder smooth muscle contractility with cholelithiasis in myotonic dystrophy type 1. Neuromuscul Disord. 2008;18(8):641–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Mankodi A, Lin X, Blaxall BC, Swanson MS, Thornton CA. Nuclear RNA foci in the heart in myotonic dystrophy. Circ Res. 2005;97(11):1152–5.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Jiang H, Mankodi A, Swanson MS, Moxley RT, Thornton CA. Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum Mol Genet. 2004;13(24):3079–88.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT, et al. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell. 2002;10(1):35–44.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Charlet BN, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell. 2002;10(1):45–53.CrossRefGoogle Scholar
  60. 60.
    Philips AV, Timchenko LT, Cooper TA. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science. 1998;280(5364):737–41.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Savkur RS, Philips AV, Cooper TA. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet. 2001;29(1):40–7.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Sergeant N, Sablonnière B, Schraen-Maschke S, Ghestem A, Maurage CA, Wattez A, et al. Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1. Hum Mol Genet. 2001;10(19):2143–55.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kuyumcu-Martinez NM, Wang GS, Cooper TA. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol Cell. 2007;28(1):68–78.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Miller JW, Urbinati CR, Teng-Umnuay P, Stenberg MG, Byrne BJ, Thornton CA, et al. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J. 2000;19(17):4439–48.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Begemann G, Paricio N, Artero R, Kiss I, Perez-Alonso M, Mlodzik M. Muscleblind, a gene required for photoreceptor differentiation in Drosophila, encodes novel nuclear Cys3His-type zinc-finger-containing proteins. Development. 1997;124(21):4321–31.PubMedGoogle Scholar
  66. 66.
    Kim DH, Langlois MA, Lee KB, Riggs AD, Puymirat J, Rossi JJ. HnRNP H inhibits nuclear export of mRNA containing expanded CUG repeats and a distal branch point sequence. Nucleic Acids Res. 2005;33(12):3866–74.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Laurent FX, Sureau A, Klein AF, Trouslard F, Gasnier E, Furling D, et al. New function for the RNA helicase p68/DDX5 as a modifier of MBNL1 activity on expanded CUG repeats. Nucleic Acids Res. 2012;40(7):3159–71.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Paul S, Dansithong W, Kim D, Rossi J, Webster NJ, Comai L, et al. Interaction of muscleblind, CUG-BP1 and hnRNP H proteins in DM1-associated aberrant IR splicing. EMBO J. 2006;25(18):4271–83.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ravel-Chapuis A, Belanger G, Yadava RS, Mahadevan MS, DesGroseillers L, Cote J, et al. The RNA-binding protein Staufen1 is increased in DM1 skeletal muscle and promotes alternative pre-mRNA splicing. J Cell Biol. 2012;196(6):699–712.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Fardaei M, Rogers MT, Thorpe HM, Larkin K, Hamshere MG, Harper PS, et al. Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Hum Mol Genet. 2002;11(7):805–14.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Mankodi A, Urbinati CR, Yuan QP, Moxley RT, Sansone V, Krym M, et al. Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum Mol Genet. 2001;10(19):2165–70.PubMedCrossRefGoogle Scholar
  72. 72.
    Kanadia RN, Johnstone KA, Mankodi A, Lungu C, Thornton CA, Esson D, et al. A muscleblind knockout model for myotonic dystrophy. Science. 2003;302(5652):1978–80.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Kanadia RN, Shin J, Yuan Y, Beattie SG, Wheeler TM, Thornton CA, et al. Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc Natl Acad Sci U S A. 2006;103(31):11748–53.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Du H, Cline MS, Osborne RJ, Tuttle DL, Clark TA, Donohue JP, et al. Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy. Nat Struct Mol Biol. 2010;17(2):187–93.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Suenaga K, Lee KY, Nakamori M, Tatsumi Y, Takahashi MP, Fujimura H, et al. Muscleblind-like 1 knockout mice reveal novel splicing defects in the myotonic dystrophy brain. PLoS One. 2012;7(3):e33218.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Charizanis K, Lee KY, Batra R, Goodwin M, Zhang C, Yuan Y, et al. Muscleblind-like 2-mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy. Neuron. 2012;75(3):437–50.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Lee KY, Li M, Manchanda M, Batra R, Charizanis K, Mohan A, et al. Compound loss of muscleblind-like function in myotonic dystrophy. EMBO Mol Med. 2013;5(12):1887–900.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Goodwin M, Mohan A, Batra R, Lee KY, Charizanis K, Fernandez Gomez FJ, et al. MBNL sequestration by toxic RNAs and RNA misprocessing in the myotonic dystrophy brain. Cell Rep. 2015;12(7):1159–68.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Goers ES, Purcell J, Voelker RB, Gates DP, Berglund JA. MBNL1 binds GC motifs embedded in pyrimidines to regulate alternative splicing. Nucleic Acids Res. 2010;38(7):2467–84.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Wang ET, Cody NA, Jog S, Biancolella M, Wang TT, Treacy DJ, et al. Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell. 2012;150(4):710–24.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Konieczny P, Stepniak-Konieczna E, Sobczak K. MBNL proteins and their target RNAs, interaction and splicing regulation. Nucleic Acids Res. 2014;42(17):10873–87.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Batra R, Charizanis K, Manchanda M, Mohan A, Li M, Finn DJ, et al. Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease. Mol Cell. 2014;56(2):311–22.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT, et al. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum Mol Genet. 2006;15(13):2087–97.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Wang PY, Lin YM, Wang LH, Kuo TY, Cheng SJ, Wang GS. Reduced cytoplasmic MBNL1 is an early event in a brain-specific mouse model of myotonic dystrophy. Hum Mol Genet. 2017;26(12):2247–57.PubMedCrossRefGoogle Scholar
  85. 85.
    Seznec H, Agbulut O, Sergeant N, Savouret C, Ghestem A, Tabti N, et al. Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities. Hum Mol Genet. 2001;10(23):2717–26.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Gomes-Pereira M, Foiry L, Nicole A, Huguet A, Junien C, Munnich A, et al. CTG trinucleotide repeat “big jumps”: large expansions, small mice. PLoS Genet. 2007;3(4):e52.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Huguet A, Medja F, Nicole A, Vignaud A, Guiraud-Dogan C, Ferry A, et al. Molecular, physiological, and motor performance defects in DMSXL mice carrying >1,000 CTG repeats from the human DM1 locus. PLoS Genet. 2012;8(11):e1003043.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Hernandez-Hernandez O, Guiraud-Dogan C, Sicot G, Huguet A, Luilier S, Steidl E, et al. Myotonic dystrophy CTG expansion affects synaptic vesicle proteins, neurotransmission and mouse behaviour. Brain. 2013;136(Pt 3):957–70.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Leroy O, Wang J, Maurage CA, Parent M, Cooper T, Buee L, et al. Brain-specific change in alternative splicing of Tau exon 6 in myotonic dystrophy type 1. Biochim Biophys Acta. 2006;1762(4):460–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Leroy O, Dhaenens CM, Schraen-Maschke S, Belarbi K, Delacourte A, Andreadis A, et al. ETR-3 represses Tau exons 2/3 inclusion, a splicing event abnormally enhanced in myotonic dystrophy type I. J Neurosci Res. 2006;84(4):852–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Dhaenens CM, Tran H, Frandemiche ML, Carpentier C, Schraen-Maschke S, Sistiaga A, et al. Mis-splicing of Tau exon 10 in myotonic dystrophy type 1 is reproduced by overexpression of CELF2 but not by MBNL1 silencing. Biochim Biophys Acta. 2011;1812(7):732–42.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Caillet-Boudin ML, Fernandez-Gomez FJ, Tran H, Dhaenens CM, Buee L, Sergeant N. Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy. Front Mol Neurosci. 2014;6:57.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Brandt R, Leger J, Lee G. Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain. J Cell Biol. 1995;131(5):1327–40.PubMedCrossRefGoogle Scholar
  94. 94.
    Lee G, Neve RL, Kosik KS. The microtubule binding domain of tau protein. Neuron. 1989;2(6):1615–24.PubMedCrossRefGoogle Scholar
  95. 95.
    Brandt R, Lee G. Functional organization of microtubule-associated protein tau. Identification of regions which affect microtubule growth, nucleation, and bundle formation in vitro. J Biol Chem. 1993;268(5):3414–9.PubMedGoogle Scholar
  96. 96.
    Cowan CM, Mudher A. Are tau aggregates toxic or protective in tauopathies? Front Neurol. 2013;4:114.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci. 2005;25(22):5446–54.PubMedCrossRefGoogle Scholar
  98. 98.
    Pal R, Agbas A, Bao X, Hui D, Leary C, Hunt J, et al. Selective dendrite-targeting of mRNAs of NR1 splice variants without exon 5: identification of a cis-acting sequence and isolation of sequence-binding proteins. Brain Res. 2003;994(1):1–18.PubMedCrossRefGoogle Scholar
  99. 99.
    Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A, Stone MD, et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A. 2011;108(1):260–5.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Cleary JD, Ranum LP. New developments in RAN translation: insights from multiple diseases. Curr Opin Genet Dev. 2017;44:125–34.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Thornton CA, Wang E, Carrell EM. Myotonic dystrophy: approach to therapy. Curr Opin Genet Dev. 2017;44:135–40.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Mulders SA, van den Broek WJ, Wheeler TM, Croes HJ, van Kuik-Romeijn P, de Kimpe SJ, et al. Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc Natl Acad Sci U S A. 2009;106(33):13915–20.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, et al. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature. 2012;488(7409):111–5.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Pandey SK, Wheeler TM, Justice SL, Kim A, Younis HS, Gattis D, et al. Identification and characterization of modified antisense oligonucleotides targeting DMPK in mice and nonhuman Primates for the treatment of myotonic dystrophy type 1. J Pharmacol Exp Ther. 2015;355(2):329–40.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Hanger DP, Hughes K, Woodgett JR, Brion JP, Anderton BH. Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett. 1992;147(1):58–62.PubMedCrossRefGoogle Scholar
  106. 106.
    Ishiguro K, Shiratsuchi A, Sato S, Omori A, Arioka M, Kobayashi S, et al. Glycogen synthase kinase 3 beta is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett. 1993;325(3):167–72.PubMedCrossRefGoogle Scholar
  107. 107.
    Lovestone S, Boada M, Dubois B, Hull M, Rinne JO, Huppertz HJ, et al. A phase II trial of tideglusib in Alzheimer’s disease. J Alzheimers Dis. 2015;45(1):75–88.PubMedCrossRefGoogle Scholar
  108. 108.
    Stamelou M, Schope J, Wagenpfeil S, Del Ser T, Bang J, Lobach IY, et al. Power calculations and placebo effect for future clinical trials in progressive supranuclear palsy. Mov Dis. 2016;31(5):742–7.CrossRefGoogle Scholar
  109. 109.
    Sergeant N, Delacourte A, Buée L. Tau protein as a differential biomarker of tauopathies. Biochim Biophys Acta. 2005;1739(2):179–97.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Division of Neurology, Department of Internal MedicineHyogo College of MedicineNishinomiyaJapan

Personalised recommendations