Advertisement

Clinical Features of the Central Nervous System

  • Haruo FujinoEmail author
  • Shugo Suwazono
  • Yuhei Takado
Chapter

Abstract

Progressive muscular weakness is a typical symptom of myotonic dystrophy, but more recently, central nervous system (CNS) involvement has become a critical issue in the disorder. Recent studies have suggested the importance of cerebral involvement in myotonic dystrophy, which influences patients’ quality of life and functioning. CNS dysfunction in myotonic dystrophy has been investigated using various approaches, including cognitive (neuropsychological), neurophysiological, and neuroimaging studies. Studies have suggested that cognitive impairment in the disorder is variable, but several domains of cognition are frequently affected. Neurophysiological studies have examined the pathomechanisms of the disorder using various electrophysiological methods and modalities, such as somatosensory, visual, and auditory. Neuroimaging studies using different techniques have demonstrated that both white and gray matter of the brain are involved in the pathomechanisms of the disorder. Further accumulation of knowledge about the CNS involvement in myotonic dystrophy is required. Future possible directions of research are also discussed from each aspect in this chapter.

Keywords

Myotonic dystrophy Central nervous system Brain Cognitive impairment Evoked potentials Event-related potentials Channelopathies Hyperexcitability Magnetic resonance imaging Positron emission tomography 

Notes

Acknowledgments

This work was partly supported by grants from the Ministry of Health, Labour and Welfare of Japan (H28-Nanchitou(Nan)-Ippan-030), JSPS KAKENHI (16K09733 and 17K14067), and Japan Agency for Medical Research and Development (AMED) (17ek0109259).

References

  1. 1.
    Bugiardini E, Meola G. Consensus on cerebral involvement in myotonic dystrophy: workshop report: May 24-27, 2013, Ferrere (AT), Italy. Neuromuscul Disord. 2014;24(5):445–52.  https://doi.org/10.1016/j.nmd.2014.01.013.CrossRefPubMedGoogle Scholar
  2. 2.
    Meola G, Sansone V. Cerebral involvement in myotonic dystrophies. Muscle Nerve. 2007;36(3):294–306.CrossRefGoogle Scholar
  3. 3.
    Antonini G, Soscia F, Giubilei F, De Carolis A, Gragnani F, Morino S, et al. Health-related quality of life in myotonic dystrophy type 1 and its relationship with cognitive and emotional functioning. J Rehabil Med. 2006;38(3):181–5.CrossRefGoogle Scholar
  4. 4.
    Laberge L, Mathieu J, Auclair J, Gagnon E, Noreau L, Gagnon C. Clinical, psychosocial, and central correlates of quality of life in myotonic dystrophy type 1 patients. Eur Neurol. 2013;70(5–6):308–15.  https://doi.org/10.1159/000353991.CrossRefPubMedGoogle Scholar
  5. 5.
    Rakocevic-Stojanovic V, Peric S, Madzarevic R, Dobricic V, Ralic V, Ilic V, et al. Significant impact of behavioral and cognitive impairment on quality of life in patients with myotonic dystrophy type 1. Clin Neurol Neurosurg. 2014;126:76–81.  https://doi.org/10.1016/j.clineuro.2014.08.021.CrossRefPubMedGoogle Scholar
  6. 6.
    Gaul C, Schmidt T, Windisch G, Wieser T, Muller T, Vielhaber S, et al. Subtle cognitive dysfunction in adult onset myotonic dystrophy type 1 (DM1) and type 2 (DM2). Neurology. 2006;67(2):350–2.CrossRefGoogle Scholar
  7. 7.
    Baldanzi S, Bevilacqua F, Lorio R, Volpi L, Simoncini C, Petrucci A, et al. Disease awareness in myotonic dystrophy type 1: an observational cross-sectional study. Orphanet J Rare Dis. 2016;11:34.  https://doi.org/10.1186/s13023-016-0417-z.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fujino H, Shingaki H, Suwazono S, Ueda Y, Wada C, Nakayama T, et al. Cognitive impairment and quality of life in patients with myotonic dystrophy type 1. Muscle Nerve. 2018;57(5):742–8.  https://doi.org/10.1002/mus.26022.CrossRefPubMedGoogle Scholar
  9. 9.
    Gallais B, Gagnon C, Mathieu J, Richer L. Cognitive decline over time in adults with myotonic dystrophy type 1: a 9-year longitudinal study. Neuromuscul Disord. 2017;27(1):61–72.  https://doi.org/10.1016/j.nmd.2016.10.003.CrossRefPubMedGoogle Scholar
  10. 10.
    Meola G, Sansone V, Perani D, Scarone S, Cappa S, Dragoni C, et al. Executive dysfunction and avoidant personality trait in myotonic dystrophy type 1 (DM-1) and in proximal myotonic myopathy (PROMM/DM-2). Neuromuscul Disord. 2003;13(10):813–21.CrossRefGoogle Scholar
  11. 11.
    Modoni A, Silvestri G, Pomponi MG, Mangiola F, Tonali PA, Marra C. Characterization of the pattern of cognitive impairment in myotonic dystrophy type 1. Arch Neurol. 2004;61(12):1943–7.CrossRefGoogle Scholar
  12. 12.
    Peric S, Mandic-Stojmenovic G, Stefanova E, Savic-Pavicevic D, Pesovic J, Ilic V, et al. Frontostriatal dysexecutive syndrome: a core cognitive feature of myotonic dystrophy type 2. J Neurol. 2015;262(1):142–8.  https://doi.org/10.1007/s00415-014-7545-y.CrossRefPubMedGoogle Scholar
  13. 13.
    Sansone V, Gandossini S, Cotelli M, Calabria M, Zanetti O, Meola G. Cognitive impairment in adult myotonic dystrophies: a longitudinal study. Neurol Sci. 2007;28(1):9–15.CrossRefGoogle Scholar
  14. 14.
    Sistiaga A, Urreta I, Jodar M, Cobo AM, Emparanza J, Otaegui D, et al. Cognitive/personality pattern and triplet expansion size in adult myotonic dystrophy type 1 (DM1): CTG repeats, cognition and personality in DM1. Psychol Med. 2010;40(3):487–95.  https://doi.org/10.1017/S0033291709990602.CrossRefPubMedGoogle Scholar
  15. 15.
    Winblad S, Lindberg C, Hansen S. Cognitive deficits and CTG repeat expansion size in classical myotonic dystrophy type 1 (DM1). Behav Brain Funct. 2006;2:16.CrossRefGoogle Scholar
  16. 16.
    Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68.  https://doi.org/10.1146/annurev-psych-113011-143750.CrossRefPubMedGoogle Scholar
  17. 17.
    Kobayakawa M, Tsuruya N, Kawamura M. Theory of mind impairment in adult-onset myotonic dystrophy type 1. Neurosci Res. 2012;72(4):341–6.  https://doi.org/10.1016/j.neures.2012.01.005.CrossRefPubMedGoogle Scholar
  18. 18.
    Kobayakawa M, Tsuruya N, Takeda A, Suzuki A, Kawamura M. Facial emotion recognition and cerebral white matter lesions in myotonic dystrophy type 1. J Neurol Sci. 2010;290(1–2):48–51.  https://doi.org/10.1016/j.jns.2009.11.011.CrossRefPubMedGoogle Scholar
  19. 19.
    Serra L, Cercignani M, Bruschini M, Cipolotti L, Mancini M, Silvestri G, et al. “I know that you know that I know”: neural substrates associated with social cognition deficits in DM1 patients. PLoS One. 2016;11(6):e0156901.  https://doi.org/10.1371/journal.pone.0156901.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Takeda A, Kobayakawa M, Suzuki A, Tsuruya N, Kawamura M. Lowered sensitivity to facial emotions in myotonic dystrophy type 1. J Neurol Sci. 2009;280(1–2):35–9.  https://doi.org/10.1016/j.jns.2009.01.014.CrossRefPubMedGoogle Scholar
  21. 21.
    Winblad S, Hellstrom P, Lindberg C, Hansen S. Facial emotion recognition in myotonic dystrophy type 1 correlates with CTG repeat expansion. J Neurol Neurosurg Psychiatry. 2006;77(2):219–23.CrossRefGoogle Scholar
  22. 22.
    Modoni A, Silvestri G, Vita MG, Quaranta D, Tonali PA, Marra C. Cognitive impairment in myotonic dystrophy type 1 (DM1): a longitudinal follow-up study. J Neurol. 2008;255(11):1737–42.  https://doi.org/10.1007/s00415-008-0017-5.CrossRefPubMedGoogle Scholar
  23. 23.
    Winblad S, Samuelsson L, Lindberg C, Meola G. Cognition in myotonic dystrophy type 1: a 5-year follow-up study. Eur J Neurol. 2016;23(9):1471–6.  https://doi.org/10.1111/ene.13062.CrossRefPubMedGoogle Scholar
  24. 24.
    Gagnon C, Meola G, Hebert LJ, Laberge L, Leone M, Heatwole C. Report of the second outcome measures in myotonic dystrophy type 1 (OMMYD-2) international workshop San Sebastian, Spain, October 16, 2013. Neuromuscul Disord. 2015;25(7):603–16.  https://doi.org/10.1016/j.nmd.2015.01.008.CrossRefPubMedGoogle Scholar
  25. 25.
    Gagnon C, Meola G, Hebert LJ, Puymirat J, Laberge L, Leone M. Report of the first outcome measures in myotonic dystrophy type 1 (OMMYD-1) international workshop: Clearwater, Florida, November 30, 2011. Neuromuscul Disord. 2013;23(12):1056–68.  https://doi.org/10.1016/j.nmd.2013.07.004.CrossRefPubMedGoogle Scholar
  26. 26.
    Gallais B, Gagnon C, Mathieu J, Richer L, Jean S, Laberge L. Cognitive deficits associated with sleep apnea in myotonic dystrophy type 1. J Neuromuscul Dis. 2014;1(1):95–8.  https://doi.org/10.3233/JND-140012.CrossRefPubMedGoogle Scholar
  27. 27.
    Gallais B, Montreuil M, Gargiulo M, Eymard B, Gagnon C, Laberge L. Prevalence and correlates of apathy in myotonic dystrophy type 1. BMC Neurol. 2015;15:148.  https://doi.org/10.1186/s12883-015-0401-6.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Heatwole C, Bode R, Johnson N, Quinn C, Martens W, McDermott MP, et al. Patient-reported impact of symptoms in myotonic dystrophy type 1 (PRISM-1). Neurology. 2012;79(4):348–57.  https://doi.org/10.1212/WNL.0b013e318260cbe6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Winblad S, Jensen C, Mansson JE, Samuelsson L, Lindberg C. Depression in myotonic dystrophy type 1: clinical and neuronal correlates. Behav Brain Funct. 2010;6:25.  https://doi.org/10.1186/1744-9081-6-25.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Douniol M, Jacquette A, Cohen D, Bodeau N, Rachidi L, Angeard N, et al. Psychiatric and cognitive phenotype of childhood myotonic dystrophy type 1. Dev Med Child Neurol. 2012;54(10):905–11.  https://doi.org/10.1111/j.1469-8749.2012.04379.x.CrossRefPubMedGoogle Scholar
  31. 31.
    van Engelen B. Cognitive behaviour therapy plus aerobic exercise training to increase activity in patients with myotonic dystrophy type 1 (DM1) compared to usual care (OPTIMISTIC): study protocol for randomised controlled trial. Trials. 2015;16:224.  https://doi.org/10.1186/s13063-015-0737-7.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Barwick DD, Osselton JW, Walton JN. Electroencephalographic studies in hereditary myopathy. J Neurol Neurosurg Psychiatry. 1965;28:109–14.CrossRefGoogle Scholar
  33. 33.
    Beijersbergen RS, Kemp A, van Leeuwen WS. EEG observations in dystrophia myotonica (Curschmann-Steinert). Electroencephalogr Clin Neurophysiol. 1980;49(1–2):143–51.CrossRefGoogle Scholar
  34. 34.
    Thompson DS, Woodward JB, Ringel SP, Nelson LM. Evoked potential abnormalities in myotonic dystrophy. Electroencephalogr Clin Neurophysiol. 1983;56(5):453–6.CrossRefGoogle Scholar
  35. 35.
    Culebras A, Feldman RG, Merk FB. Cytoplasmic inclusion bodies within neurons of the thalamus in myotonic dystrophy. A light and electron microscope study. J Neurol Sci. 1973;19(3):319–29.CrossRefGoogle Scholar
  36. 36.
    Ono S, Inoue K, Mannen T, Kanda F, Jinnai K, Takahashi K. Neuropathological changes of the brain in myotonic dystrophy—some new observations. J Neurol Sci. 1987;81(2–3):301–20.CrossRefGoogle Scholar
  37. 37.
    Wisniewski HM, Berry K, Spiro AJ. Ultrastructure of thalamic neuronal inclusions in myotonic dystrophy. J Neurol Sci. 1975;24(3):321–9.CrossRefGoogle Scholar
  38. 38.
    Bartel PR, Lotz BP, Van der Meyden CH. Short-latency somatosensory evoked potentials in dystrophia myotonica. J Neurol Neurosurg Psychiatry. 1984;47(5):524–9.CrossRefGoogle Scholar
  39. 39.
    Bartel P, Lotz B, Robinson E, Van der Meyden C. Posterior tibial and sural nerve somatosensory evoked potentials in dystrophia myotonica. J Neurol Sci. 1985;70(1):55–65.CrossRefGoogle Scholar
  40. 40.
    Mochizuki H, Hanajima R, Kowa H, Motoyoshi Y, Ashida H, Kamakura K, et al. Somatosensory evoked potential recovery in myotonic dystrophy. Clin Neurophysiol. 2001;112(5):793–9.CrossRefGoogle Scholar
  41. 41.
    Gott PS, Karnaze DS, Keane JR. Abnormal visual evoked potentials in myotonic dystrophy. Neurology. 1983;33(12):1622–5.CrossRefGoogle Scholar
  42. 42.
    Sandrini G, Gelmi C, Rossi V, Bianchi PE, Alfonsi E, Pacchetti C, et al. Electroretinographic and visual evoked potential abnormalities in myotonic dystrophy. Electroencephalogr Clin Neurophysiol. 1986;64(3):215–7.CrossRefGoogle Scholar
  43. 43.
    Balatsouras DG, Felekis D, Panas M, Xenellis J, Koutsis G, Kladi A, et al. Inner ear dysfunction in myotonic dystrophy type 1. Acta Neurol Scand. 2013;127(5):337–43.  https://doi.org/10.1111/ane.12020.CrossRefPubMedGoogle Scholar
  44. 44.
    Wright RB, Glantz RH, Butcher J. Hearing loss in myotonic dystrophy. Ann Neurol. 1988;23(2):202–3.CrossRefGoogle Scholar
  45. 45.
    Arakawa K, Tomi H, Tobimatsu S, Kira J. Middle latency auditory-evoked potentials in myotonic dystrophy: relation to the size of the CTG trinucleotide repeat and intelligent quotient. J Neurol Sci. 2003;207(1–2):31–6.CrossRefGoogle Scholar
  46. 46.
    Huber SJ, Kissel JT, Shuttleworth EC, Chakeres DW, Clapp LE, Brogan MA. Magnetic resonance imaging and clinical correlates of intellectual impairment in myotonic dystrophy. Arch Neurol. 1989;46(5):536–40.CrossRefGoogle Scholar
  47. 47.
    Jacobson GP, Privitera M, Neils JR, Grayson AS, Yeh HS. The effects of anterior temporal lobectomy (ATL) on the middle-latency auditory evoked potential (MLAEP). Electroencephalogr Clin Neurophysiol. 1990;75(3):230–41.CrossRefGoogle Scholar
  48. 48.
    Woods DL, Clayworth CC. Age-related changes in human middle latency auditory evoked potentials. Electroencephalogr Clin Neurophysiol. 1986;65(4):297–303.CrossRefGoogle Scholar
  49. 49.
    Cosi V, Bergamaschi R, Versino M, Callieco R, Sandrini G, Ruiz L. Multimodal evoked potentials in myotonic dystrophy (MyD). Neurophysiol Clin. 1992;22(1):41–50.CrossRefGoogle Scholar
  50. 50.
    Hanafusa H, Motomura N, Asaba H, Sakai T, Kawamura H. Event-related potentials (P300) in myotonic dystrophy. Acta Neurol Scand. 1989;80(2):111–3.CrossRefGoogle Scholar
  51. 51.
    Perini GI, Colombo G, Armani M, Pellegrini A, Ermani M, Miotti M, et al. Intellectual impairment and cognitive evoked potentials in myotonic dystrophy. J Nerv Ment Dis. 1989;177(12):750–4.CrossRefGoogle Scholar
  52. 52.
    Perini GI, Menegazzo E, Ermani M, Zara M, Gemma A, Ferruzza E, et al. Cognitive impairment and (CTG)n expansion in myotonic dystrophy patients. Biol Psychiatry. 1999;46(3):425–31.CrossRefGoogle Scholar
  53. 53.
    Oliveri M, Fierro B, Lo Presti R, Brighina F, La Bua V, Caimi G. P300 and respiratory findings in myotonic muscular dystrophy. Funct Neurol. 1999;14(3):149–54.PubMedGoogle Scholar
  54. 54.
    Tanaka H, Arai M, Harada M, Hozumi A, Hirata K. Cognition and event-related potentials in adult-onset non-demented myotonic dystrophy type 1. Clin Neurophysiol. 2012;123(2):261–9.  https://doi.org/10.1016/j.clinph.2011.06.012.CrossRefPubMedGoogle Scholar
  55. 55.
    Kazis A, Kimiskidis V, Georgiadis G, Kapinas K. Cognitive event-related potentials and magnetic resonance imaging in myotonic dystrophy. Neurophysiol Clin. 1996;26(2):75–84.CrossRefGoogle Scholar
  56. 56.
    Donahue LA, Mangla R, Westesson PL. Neuroimaging in myotonic dystrophy type 1. Neurology. 2009;73(22):1931.  https://doi.org/10.1212/WNL.0b013e3181c3fdb0.CrossRefPubMedGoogle Scholar
  57. 57.
    Worku DK. Concurrence of myotonic dystrophy and epilepsy: a case report. J Med Case Rep. 2014;8:427.  https://doi.org/10.1186/1752-1947-8-427.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Franke C, Hatt H, Iaizzo PA, Lehmann-Horn F. Characteristics of Na+ channels and cl- conductance in resealed muscle fibre segments from patients with myotonic dystrophy. J Physiol. 1990;425:391–405.CrossRefGoogle Scholar
  59. 59.
    Tan SV, Z'Graggen WJ, Boerio D, Turner C, Hanna MG, Bostock H. In vivo assessment of muscle membrane properties in myotonic dystrophy. Muscle Nerve. 2016;54(2):249–57.  https://doi.org/10.1002/mus.25025.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Chisari C, Licitra R, Pellegrini M, Pellegrino M, Rossi B. Fluoxetine blocks myotonic runs and reverts abnormal surface electromyogram pattern in patients with myotonic dystrophy type 1. Clin Neuropharmacol. 2009;32(6):330–4.  https://doi.org/10.1097/WNF.0b013e3181ae5546.CrossRefPubMedGoogle Scholar
  61. 61.
    Ogata A, Terae S, Fujita M, Tashiro K. Anterior temporal white matter lesions in myotonic dystrophy with intellectual impairment: an MRI and neuropathological study. Neuroradiology. 1998;40(7):411–5.CrossRefGoogle Scholar
  62. 62.
    Caso F, Agosta F, Peric S, Rakocevic-Stojanovic V, Copetti M, Kostic VS, et al. Cognitive impairment in myotonic dystrophy type 1 is associated with white matter damage. PLoS One. 2014;9(8):e104697.  https://doi.org/10.1371/journal.pone.0104697.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Di Costanzo A, Di Salle F, Santoro L, Bonavita V, Tedeschi G. Dilated Virchow-Robin spaces in myotonic dystrophy: frequency, extent and significance. Eur Neurol. 2001;46(3):131–9.CrossRefGoogle Scholar
  64. 64.
    Minnerop M, Weber B, Schoene-Bake JC, Roeske S, Mirbach S, Anspach C, et al. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease. Brain. 2011;134(12):3530–46.  https://doi.org/10.1093/brain/awr299.CrossRefPubMedGoogle Scholar
  65. 65.
    Schneider-Gold C, Bellenberg B, Prehn C, Krogias C, Schneider R, Klein J, et al. Cortical and subcortical grey and white matter atrophy in myotonic dystrophies type 1 and 2 is associated with cognitive impairment, depression and daytime sleepiness. PLoS One. 2015;10(6):e0130352.  https://doi.org/10.1371/journal.pone.0130352.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Baldanzi S, Cecchi P, Fabbri S, Pesaresi I, Simoncini C, Angelini C, et al. Relationship between neuropsychological impairment and grey and white matter changes in adult-onset myotonic dystrophy type 1. Neuroimage Clin. 2016;12:190–7.  https://doi.org/10.1016/j.nicl.2016.06.011. eCollection 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Wozniak JR, Mueller BA, Lim KO, Hemmy LS, Day JW. Tractography reveals diffuse white matter abnormalities in myotonic dystrophy type 1. J Neurol Sci. 2014;341(1–2):73–8.  https://doi.org/10.1016/j.jns.2014.04.005.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Cabada T, Iridoy M, Jerico I, Lecumberri P, Seijas R, Gargallo A, et al. Brain involvement in myotonic dystrophy type 1: a morphometric and diffusion tensor imaging study with neuropsychological correlation. Arch Clin Neuropsychol. 2017;32(4):401–12.  https://doi.org/10.1093/arclin/acx008.CrossRefPubMedGoogle Scholar
  69. 69.
    Weston PS, Simpson IJ, Ryan NS, Ourselin S, Fox NC. Diffusion imaging changes in grey matter in Alzheimer’s disease: a potential marker of early neurodegeneration. Alzheimers Res Ther. 2015;7(1):47.  https://doi.org/10.1186/s13195-015-0132-3.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Takado Y, Terajima K, Ohkubo M, Okamoto K, Shimohata T, Nishizawa M, et al. Diffuse brain abnormalities in myotonic dystrophy type 1 detected by 3.0 T proton magnetic resonance spectroscopy. Eur Neurol. 2015;73(3–4):247–56.  https://doi.org/10.1159/000371575.CrossRefPubMedGoogle Scholar
  71. 71.
    Akiguchi I, Nakano S, Shiino A, Kimura R, Inubushi T, Handa J, et al. Brain proton magnetic resonance spectroscopy and brain atrophy in myotonic dystrophy. Arch Neurol. 1999;56(3):325–30.CrossRefGoogle Scholar
  72. 72.
    Chang L, Ernst T, Osborn D, Seltzer W, Leonido-Yee M, Poland RE. Proton spectroscopy in myotonic dystrophy: correlations with CTG repeats. Arch Neurol. 1998;55(3):305–11.CrossRefGoogle Scholar
  73. 73.
    Hashimoto T, Tayama M, Yoshimoto T, Miyazaki M, Harada M, Miyoshi H, et al. Proton magnetic resonance spectroscopy of brain in congenital myotonic dystrophy. Pediatr Neurol. 1995;12(4):335–40.CrossRefGoogle Scholar
  74. 74.
    Vielhaber S, Jakubiczka S, Gaul C, Schoenfeld MA, Debska-Vielhaber G, Zierz S, et al. Brain 1H magnetic resonance spectroscopic differences in myotonic dystrophy type 2 and type 1. Muscle Nerve. 2006;34(2):145–52.  https://doi.org/10.1002/mus.20565.CrossRefPubMedGoogle Scholar
  75. 75.
    Caillet-Boudin ML, Fernandez-Gomez FJ, Tran H, Dhaenens CM, Buee L, Sergeant N. Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy. Front Mol Neurosci. 2014;6:57.  https://doi.org/10.3389/fnmol.2013.00057.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79(6):1094–108.  https://doi.org/10.1016/j.neuron.2013.07.037.CrossRefGoogle Scholar
  77. 77.
    Serra L, Silvestri G, Petrucci A, Basile B, Masciullo M, Makovac E, et al. Abnormal functional brain connectivity and personality traits in myotonic dystrophy type 1. JAMA Neurol. 2014;71(5):603–11.  https://doi.org/10.1001/jamaneurol.2014.130.CrossRefPubMedGoogle Scholar
  78. 78.
    Serra L, Mancini M, Silvestri G, Petrucci A, Masciullo M, Spano B, et al. Brain connectomics’ modification to clarify motor and nonmotor features of myotonic dystrophy type 1. Neural Plast. 2016;2016:2696085.  https://doi.org/10.1155/2016/2696085.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Peric S, Brajkovic L, Belanovic B, Ilic V, Salak-Djokic B, Basta I, et al. Brain positron emission tomography in patients with myotonic dystrophy type 1 and type 2. J Neurol Sci. 2017;378:187–92.  https://doi.org/10.1016/j.jns.2017.05.013.CrossRefPubMedGoogle Scholar
  80. 80.
    Meola G, Sansone V, Perani D, Colleluori A, Cappa S, Cotelli M, et al. Reduced cerebral blood flow and impaired visual-spatial function in proximal myotonic myopathy. Neurology. 1999;53(5):1042–50.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Special Needs EducationOita UniversityOitaJapan
  2. 2.Department of Neurology and Center for Clinical NeuroscienceNational Hospital Organization Okinawa HospitalOkinawaJapan
  3. 3.Department of Functional Brain Imaging ResearchNational Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and TechnologyChibaJapan

Personalised recommendations