Advertisement

Therapeutic Development in Myotonic Dystrophy

  • Masayuki NakamoriEmail author
Chapter
  • 340 Downloads

Abstract

Myotonic dystrophy (DM) is the most common form of muscular dystrophy in adults, caused by unstable genomic expansions of CTG or CCTG repeats. The mutant RNA transcripts containing expanded repeats cause a toxic gain-of-function by perturbing splicing factors in the nucleus, resulting in misregulation of alternative pre-mRNA splicing. Recent advances in basic and translational research and pharmacological approaches provide clues for therapeutic intervention in DM. Here, we review the therapeutic approaches for targeting the toxic RNA with antisense oligonucleotides and small molecules.

Keywords

Splicing MBNL Antisense oligonucleotides Small molecule 

References

  1. 1.
    Nakamori M, Takahashi MP. Myotonic dystrophy. In: Takeda S, Miyagoe-Suzuki Y, Yoshimura M, editors. Translational research in muscular dystrophy. Tokyo: Springer; 2016. p. 39–61.CrossRefGoogle Scholar
  2. 2.
    Nakamori M, Thornton C. Epigenetic changes and non-coding expanded repeats. Neurobiol Dis. 2010;39(1):21–7.  https://doi.org/10.1016/j.nbd.2010.02.004.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT, et al. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell. 2002;10(1):35–44.CrossRefGoogle Scholar
  4. 4.
    Savkur RS, Philips AV, Cooper TA. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet. 2001;29(1):40–7.CrossRefGoogle Scholar
  5. 5.
    Kimura T, Nakamori M, Lueck JD, Pouliquin P, Aoike F, Fujimura H, et al. Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum Mol Genet. 2005;14(15):2189–200.CrossRefGoogle Scholar
  6. 6.
    Nakamori M, Kimura T, Fujimura H, Takahashi MP, Sakoda S. Altered mRNA splicing of dystrophin in type 1 myotonic dystrophy. Muscle Nerve. 2007;36(2):251–7.  https://doi.org/10.1002/mus.20809.CrossRefPubMedGoogle Scholar
  7. 7.
    Nakamori M, Kimura T, Kubota T, Matsumura T, Sumi H, Fujimura H, et al. Aberrantly spliced alpha-dystrobrevin alters alpha-syntrophin binding in myotonic dystrophy type 1. Neurology. 2008;70(9):677–85.  https://doi.org/10.1212/01.wnl.0000302174.08951.cf.CrossRefPubMedGoogle Scholar
  8. 8.
    Tang ZZ, Yarotskyy V, Wei L, Sobczak K, Nakamori M, Eichinger K, et al. Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of CaV1.1 calcium channel. Hum Mol Genet. 2012;21(6):1312–24.  https://doi.org/10.1093/hmg/ddr568.CrossRefPubMedGoogle Scholar
  9. 9.
    Nakamori M, Sobczak K, Puwanant A, Welle S, Eichinger K, Pandya S, et al. Splicing biomarkers of disease severity in myotonic dystrophy. Ann Neurol. 2013;74(6):862–72.  https://doi.org/10.1002/ana.23992.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Freyermuth F, Rau F, Kokunai Y, Linke T, Sellier C, Nakamori M, et al. Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy. Nat Commun. 2016;7:11067.  https://doi.org/10.1038/ncomms11067.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Southwell AL, Skotte NH, Bennett CF, Hayden MR. Antisense oligonucleotide therapeutics for inherited neurodegenerative diseases. Trends Mol Med. 2012;18(11):634–43.  https://doi.org/10.1016/j.molmed.2012.09.001.CrossRefPubMedGoogle Scholar
  12. 12.
    Koo T, Wood MJ. Clinical trials using antisense oligonucleotides in duchenne muscular dystrophy. Hum Gene Ther. 2013;24(5):479–88.  https://doi.org/10.1089/hum.2012.234.CrossRefPubMedGoogle Scholar
  13. 13.
    Wheeler TM, Lueck JD, Swanson MS, Dirksen RT, Thornton CA. Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. J Clin Invest. 2007;117(12):3952–7.  https://doi.org/10.1172/JCI33355.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kanadia RN, Johnstone KA, Mankodi A, Lungu C, Thornton CA, Esson D, et al. A muscleblind knockout model for myotonic dystrophy. Science. 2003;302(5652):1978–80.CrossRefGoogle Scholar
  15. 15.
    Kanadia RN, Shin J, Yuan Y, Beattie SG, Wheeler TM, Thornton CA, et al. Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc Natl Acad Sci U S A. 2006;103(31):11748–53.CrossRefGoogle Scholar
  16. 16.
    Roberts R, Timchenko NA, Miller JW, Reddy S, Caskey CT, Swanson MS, et al. Altered phosphorylation and intracellular distribution of a (CUG)n triplet repeat RNA-binding protein in patients with myotonic dystrophy and in myotonin protein kinase knockout mice. Proc Natl Acad Sci U S A. 1997;94(24):13221–6.CrossRefGoogle Scholar
  17. 17.
    Ho TH, Bundman D, Armstrong DL, Cooper TA. Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy. Hum Mol Genet. 2005;14(11):1539–47.CrossRefGoogle Scholar
  18. 18.
    Ward AJ, Rimer M, Killian JM, Dowling JJ, Cooper TA. CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1. Hum Mol Genet. 2010;19(18):3614–22.  https://doi.org/10.1093/hmg/ddq277.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Koshelev M, Sarma S, Price RE, Wehrens XH, Cooper TA. Heart-specific overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1. Hum Mol Genet. 2010;19(6):1066–75.  https://doi.org/10.1093/hmg/ddp570.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kuyumcu-Martinez NM, Wang GS, Cooper TA. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol Cell. 2007;28(1):68–78.  https://doi.org/10.1016/j.molcel.2007.07.027.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang GS, Kuyumcu-Martinez MN, Sarma S, Mathur N, Wehrens XH, Cooper TA. PKC inhibition ameliorates the cardiac phenotype in a mouse model of myotonic dystrophy type 1. J Clin Invest. 2009;119(12):3797–806.  https://doi.org/10.1172/JCI37976.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Furling D, Doucet G, Langlois MA, Timchenko L, Belanger E, Cossette L, et al. Viral vector producing antisense RNA restores myotonic dystrophy myoblast functions. Gene Ther. 2003;10(9):795–802.  https://doi.org/10.1038/sj.gt.3301955.CrossRefPubMedGoogle Scholar
  23. 23.
    Langlois MA, Boniface C, Wang G, Alluin J, Salvaterra PM, Puymirat J, et al. Cytoplasmic and nuclear retained DMPK mRNAs are targets for RNA interference in myotonic dystrophy cells. J Biol Chem. 2005;280(17):16949–54.  https://doi.org/10.1074/jbc.M501591200.CrossRefPubMedGoogle Scholar
  24. 24.
    Nakamori M, Gourdon G, Thornton CA. Stabilization of expanded (CTG)*(CAG) repeats by antisense oligonucleotides. Mol Ther. 2011;19(12):2222–7.  https://doi.org/10.1038/mt.2011.191.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mankodi A, Logigian E, Callahan L, McClain C, White R, Henderson D, et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science. 2000;289(5485):1769–73.CrossRefGoogle Scholar
  26. 26.
    Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, et al. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature. 2012;488(7409):111–5.  https://doi.org/10.1038/nature11362.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pandey SK, Wheeler TM, Justice SL, Kim A, Younis HS, Gattis D, et al. Identification and characterization of modified antisense oligonucleotides targeting DMPK in mice and nonhuman primates for the treatment of myotonic dystrophy type 1. J Pharmacol Exp Ther. 2015;355(2):329–40.  https://doi.org/10.1124/jpet.115.226969.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Warf MB, Nakamori M, Matthys CM, Thornton CA, Berglund JA. Pentamidine reverses the splicing defects associated with myotonic dystrophy. Proc Natl Acad Sci U S A. 2009;106(44):18551–6.  https://doi.org/10.1073/pnas.0903234106.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Parkesh R, Childs-Disney JL, Nakamori M, Kumar A, Wang E, Wang T, et al. Design of a bioactive small molecule that Targets the myotonic dystrophy type 1 RNA via an RNA motif-ligand database and chemical similarity searching. J Am Chem Soc. 2012;134(10):4731–42.  https://doi.org/10.1021/ja210088v.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Childs-Disney JL, Parkesh R, Nakamori M, Thornton CA, Disney MD. Rational design of bioactive, modularly assembled aminoglycosides targeting the RNA that causes myotonic dystrophy type 1. ACS Chem Biol. 2012;7(12):1984–93.  https://doi.org/10.1021/cb3001606.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ofori LO, Hoskins J, Nakamori M, Thornton CA, Miller BL. From dynamic combinatorial ‘hit’ to lead: in vitro and in vivo activity of compounds targeting the pathogenic RNAs that cause myotonic dystrophy. Nucleic Acids Res. 2012;40(13):6380–90.  https://doi.org/10.1093/nar/gks298.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Coonrod LA, Nakamori M, Wang W, Carrell S, Hilton CL, Bodner MJ, et al. Reducing levels of toxic RNA with small molecules. ACS Chem Biol. 2013;8(11):2528–37.  https://doi.org/10.1021/cb400431f.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Siboni RB, Bodner MJ, Khalifa MM, Docter AG, Choi JY, Nakamori M, et al. Biological efficacy and toxicity of diamidines in myotonic dystrophy type 1 models. J Med Chem. 2015;58(15):5770–80.  https://doi.org/10.1021/acs.jmedchem.5b00356.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Siboni RB, Nakamori M, Wagner SD, Struck AJ, Coonrod LA, Harriott SA, et al. Actinomycin D specifically reduces expanded CUG repeat RNA in myotonic dystrophy models. Cell Rep. 2015;13(11):2386–94.  https://doi.org/10.1016/j.celrep.2015.11.028.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nakamori M, Taylor K, Mochizuki H, Sobczak K, Takahashi MP. Oral administration of erythromycin decreases RNA toxicity in myotonic dystrophy. Ann Clin Transl Neurol. 2016;3(1):42–54.  https://doi.org/10.1002/acn3.271.CrossRefPubMedGoogle Scholar
  36. 36.
    Nakamori M, Pearson CE, Thornton CA. Bidirectional transcription stimulates expansion and contraction of expanded (CTG)•(CAG) repeats. Hum Mol Genet. 2011;20(3):580–8.  https://doi.org/10.1093/hmg/ddq501.CrossRefPubMedGoogle Scholar
  37. 37.
    Nakamori M, Sobczak K, Moxley RT III, Thornton CA. Scaled-down genetic analysis of myotonic dystrophy type 1 and type 2. Neuromuscul Disord. 2009;19(11):759–62.  https://doi.org/10.1016/j.nmd.2009.07.012.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gomes-Pereira M, Monckton DG. Chemically induced increases and decreases in the rate of expansion of a CAG*CTG triplet repeat. Nucleic Acids Res. 2004;32(9):2865–72.  https://doi.org/10.1093/nar/gkh612.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Heatwole C, Bode R, Johnson NE, Dekdebrun J, Dilek N, Eichinger K, et al. Myotonic dystrophy health index: correlations with clinical tests and patient function. Muscle Nerve. 2016;53(2):183–90.  https://doi.org/10.1002/mus.24725.CrossRefPubMedGoogle Scholar
  40. 40.
    Garcia-Lopez A, et al. In vivo discovery of a peptide that prevents CUG-RNA hairpin formation and reverses RNA toxicity in myotonic dystrophy models. Proc Natl Acad Sci U S A. 2011;108:11866–71.CrossRefGoogle Scholar
  41. 41.
    Jones K, et al. GSK3β mediates muscle pathology in myotonic dystrophy. J Clin Invest. 2012;122:4461–72.CrossRefGoogle Scholar
  42. 42.
    Oana K, et al. Manumycin A corrects aberrant splicing of Clcn1 in myotonic dystrophy type 1 (DM1) mice. Sci Rep. 2142;2013:3.Google Scholar
  43. 43.
    Herrendorff R, et al. Identification of plant-derived alkaloids with therapeutic potential for myotonic dystrophy type I. J Biol Chem. 2016;291:17165–77.CrossRefGoogle Scholar
  44. 44.
    Chen G, et al. Phenylbutazone induces expression of MBNL1 and suppresses formation of MBNL1-CUG RNA foci in a mouse model of myotonic dystrophy. Sci Rep. 2016;6:25317.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of NeurologyOsaka University Graduate School of MedicineOsakaJapan

Personalised recommendations