Advertisement

Midline Block (Central Shielding)

  • Tomoaki TamakiEmail author
Chapter

Abstract

In radiotherapy for cervical cancer, because brachytherapy can provide concentrated dose to the primary tumor, midline block (central shielding) has been applied at least partially in external beam therapy to lower the dose to rectum and bladder and avoid severe complications. Although this practice has been decreased over the years globally, the central shielding technique continues to be used as standard in Japan. The use of central shielding in Japan has resulted in relatively low incidence of late complications in the rectum and bladder without compromising the disease control. Recent study of composite dose distributions of the treatment regimen using central shielding revealed its characteristics which explains the benefit of this technique. This chapter will cover the history, philosophy, analysis of composite dose distributions, issues of dose reporting, and the future prospect of this technique.

Keywords

Cervical cancer Brachytherapy Central shielding Midline block Composite dose distributions DVH parameters 

References

  1. 1.
    Tod M, Meredith W. A dosage system for use in the treatment of cancer of the uterine cervix. Brit J Radiol. 1938;11:809–23.CrossRefGoogle Scholar
  2. 2.
    Fletcher GH. Roentgen treatment of cancer of the cervix. Radiology. 1950;54(6):832–42.CrossRefPubMedGoogle Scholar
  3. 3.
    Perez C, Kavanagh B. Uterine cervix. In: Halperin E, Perez C, Brady L, editors. Principles and practice of radiation oncology. 5th ed. PA: Lippincott Williams & Wilkins; 2008. p. 1532–609.Google Scholar
  4. 4.
    Wolfson AH, Abdel-Wahab M, Markoe AM, Raub WJ Jr, Diaz D, Desmond JJ, et al. A quantitative assessment of standard vs. customized midline shield construction for invasive cervical carcinoma. Int J Radiat Oncol Biol Phys. 1997;37(1):237–42.CrossRefPubMedGoogle Scholar
  5. 5.
    Viswanathan AN, Beriwal S, De Los Santos JF, Demanes DJ, Gaffney D, Hansen J, et al. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part II: High-dose-rate brachytherapy. Brachytherapy. 2012;11(1):47–52.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Morris M, Eifel PJ, Lu J, Grigsby PW, Levenback C, Stevens RE, et al. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med. 1999;340(15):1137–43.CrossRefPubMedGoogle Scholar
  7. 7.
    Whitney CW, Sause W, Bundy BN, Malfetano JH, Hannigan EV, Fowler WC Jr, et al. Randomized comparison of fluorouracil plus cisplatin versus hydroxyurea as an adjunct to radiation therapy in stage IIB-IVA carcinoma of the cervix with negative para-aortic lymph nodes: a Gynecologic Oncology Group and Southwest Oncology Group study. J Clin Oncol. 1999;17(5):1339–48.CrossRefPubMedGoogle Scholar
  8. 8.
    Rose PG, Bundy BN, Watkins EB, Thigpen JT, Deppe G, Maiman MA, et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med. 1999;340(15):1144–53.CrossRefPubMedGoogle Scholar
  9. 9.
    Pearcey R, Brundage M, Drouin P, Jeffrey J, Johnston D, Lukka H, et al. Phase III trial comparing radical radiotherapy with and without cisplatin chemotherapy in patients with advanced squamous cell cancer of the cervix. J Clin Oncol. 2002;20(4):966–72.CrossRefPubMedGoogle Scholar
  10. 10.
    Potter R, Knocke TH, Fellner C, Baldass M, Reinthaller A, Kucera H. Definitive radiotherapy based on HDR brachytherapy with iridium 192 in uterine cervix carcinoma: report on the Vienna University Hospital findings (1993–1997) compared to the preceding period in the context of ICRU 38 recommendations. Cancer Radiother. 2000;4(2):159–72.CrossRefPubMedGoogle Scholar
  11. 11.
    Potter R, Georg P, Dimopoulos JC, Grimm M, Berger D, Nesvacil N, et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother Oncol. 2011;100(1):116–23.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mazeron R, Fokdal LU, Kirchheiner K, Georg P, Jastaniyah N, Segedin B, et al. Dose-volume effect relationships for late rectal morbidity in patients treated with chemoradiation and MRI-guided adaptive brachytherapy for locally advanced cervical cancer: results from the prospective multicenter EMBRACE study. Radiother Oncol. 2016;120(3):412–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Report 89. Journal of the ICRU. 2013;13(1–2):Np.Google Scholar
  14. 14.
    Tazaki E. Historical development of radiotherapy for the uterine cervical cancer in Japan. J Jpn Soc Ther Radiol Oncol. 1999;11:157–73.Google Scholar
  15. 15.
    Arai T, Akanuma A, Ikeda M, Inoue T, Kasamatsu T, Kubo H, et al. Standardized radiation treatment method for carcinoma of the uterine cervix. Jpn J Cancer Clin. 1984;30(5):496–500.Google Scholar
  16. 16.
    Shigematsu Y, Nishiyama K, Masaki N, Inoue T, Miyata Y, Ikeda H, et al. Treatment of carcinoma of the uterine cervix by remotely controlled afterloading intracavitary radiotherapy with high-dose rate: a comparative study with a low-dose rate system. Int J Radiat Oncol Biol Phys. 1983;9(3):351–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Okawa T, Kita M, Goto M, Tazaki E. Radiation therapy alone in the treatment of carcinoma of the uterine cervix: review of experience at Tokyo Women’s Medical College (1969–1983). Int J Radiat Oncol Biol Phys. 1987;13(12):1845–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Teshima T, Chatani M, Hata K, Inoue T. High-dose rate intracavitary therapy for carcinoma of the uterine cervix: I. General figures of survival and complication. Int J Radiat Oncol Biol Phys. 1987;13(7):1035–41.CrossRefPubMedGoogle Scholar
  19. 19.
    Akine Y, Arimoto H, Ogino T, Kajiura Y, Tsukiyama I, Egawa S, et al. Carcinoma of the uterine cervix treated by irradiation alone. Results of treatment at the National Cancer Center, Tokyo. Acta Oncol. 1990;29(6):747–53.CrossRefPubMedGoogle Scholar
  20. 20.
    Arai T, Nakano T, Morita S, Sakashita K, Nakamura YK, Fukuhisa K. High-dose-rate remote afterloading intracavitary radiation therapy for cancer of the uterine cervix. A 20-year experience. Cancer. 1992;69(1):175–80.CrossRefPubMedGoogle Scholar
  21. 21.
    Ito H, Kutuki S, Nishiguchi I, Shigematsu N, Kuribayashi T, Uematsu M, et al. Radiotherapy for cervical cancer with high-dose rate brachytherapy correlation between tumor size, dose and failure. Radiother Oncol. 1994;31(3):240–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Mitsuhashi N, Takahashi M, Nozaki M, Yamakawa M, Takahashi T, Sakurai H, et al. Evaluation of external beam therapy and three brachytherapy fractions for carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys. 1994;29(5):975–82.CrossRefPubMedGoogle Scholar
  23. 23.
    Ogino I, Kitamura T, Okamoto N, Yamasita K, Aikawa Y, Okajima H, et al. Late rectal complication following high dose rate intracavitary brachytherapy in cancer of the cervix. Int J Radiat Oncol Biol Phys. 1995;31(4):725–34.CrossRefPubMedGoogle Scholar
  24. 24.
    Uno T, Itami J, Aruga M, Kotaka K, Fujimoto H, Sato T, et al. High dose rate brachytherapy for carcinoma of the cervix: risk factors for late rectal complications. Int J Radiat Oncol Biol Phys. 1998;40(3):615–21.CrossRefPubMedGoogle Scholar
  25. 25.
    Hareyama M, Sakata K, Oouchi A, Nagakura H, Shido M, Someya M, et al. High-dose-rate versus low-dose-rate intracavitary therapy for carcinoma of the uterine cervix: a randomized trial. Cancer. 2002;94(1):117–24.CrossRefPubMedGoogle Scholar
  26. 26.
    Toita T, Kakinohana Y, Ogawa K, Adachi G, Moromizato H, Nagai Y, et al. Combination external beam radiotherapy and high-dose-rate intracavitary brachytherapy for uterine cervical cancer: analysis of dose and fractionation schedule. Int J Radiat Oncol Biol Phys. 2003;56(5):1344–53.CrossRefPubMedGoogle Scholar
  27. 27.
    Nakano T, Kato S, Ohno T, Tsujii H, Sato S, Fukuhisa K, et al. Long-term results of high-dose rate intracavitary brachytherapy for squamous cell carcinoma of the uterine cervix. Cancer. 2005;103(1):92–101.CrossRefPubMedGoogle Scholar
  28. 28.
    Toita T, Kato S, Niibe Y, Ohno T, Kazumoto T, Kodaira T, et al. Prospective multi-institutional study of definitive radiotherapy with high-dose-rate intracavitary brachytherapy in patients with nonbulky (<4-cm) stage I and II uterine cervical cancer (JAROG0401/JROSG04-2). Int J Radiat Oncol Biol Phys. 2012;82(1):e49–56.CrossRefPubMedGoogle Scholar
  29. 29.
    Toita T, Kitagawa R, Hamano T, Umayahara K, Hirashima Y, Aoki Y, et al. Phase II study of concurrent chemoradiotherapy with high-dose-rate intracavitary brachytherapy in patients with locally advanced uterine cervical cancer: efficacy and toxicity of a low cumulative radiation dose schedule. Gynecol Oncol. 2012;126(2):211–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Ariga T, Toita T, Kato S, Kazumoto T, Kubozono M, Tokumaru S, et al. Treatment outcomes of patients with FIGO Stage I/II uterine cervical cancer treated with definitive radiotherapy: a multi-institutional retrospective research study. J Radiat Res. 2015;56(5):841–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ohno T, Noda SE, Okonogi N, Murata K, Shibuya K, Kiyohara H, et al. In-room computed tomography-based brachytherapy for uterine cervical cancer: results of a 5-year retrospective study. J Radiat Res. 2017;58(4):543–51.PubMedGoogle Scholar
  32. 32.
    Macdonald DM, Lin LL, Biehl K, Mutic S, Nantz R, Grigsby PW. Combined intensity-modulated radiation therapy and brachytherapy in the treatment of cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71(2):618–24.CrossRefPubMedGoogle Scholar
  33. 33.
    Fenkell L, Assenholt M, Nielsen SK, Haie-Meder C, Potter R, Lindegaard J, et al. Parametrial boost using midline shielding results in an unpredictable dose to tumor and organs at risk in combined external beam radiotherapy and brachytherapy for locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2011;79(5):1572–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Perez CA, Breaux S, Madoc-Jones H, Camel HM, Purdy J, Sharma S, et al. Correlation between radiation dose and tumor recurrence and complications in carcinoma of the uterine cervix: stages I and IIA. Int J Radiat Oncol Biol Phys. 1979;5(3):373–82.CrossRefPubMedGoogle Scholar
  35. 35.
    Potter R, Haie-Meder C, Van Limbergen E, Barillot I, De Brabandere M, Dimopoulos J, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78(1):67–77.CrossRefPubMedGoogle Scholar
  36. 36.
    Tamaki T, Ohno T, Noda SE, Kato S, Nakano T. Filling the gap in central shielding: three-dimensional analysis of the EQD2 dose in radiotherapy for cervical cancer with the central shielding technique. J Radiat Res. 2015;56(5):804–10.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tamaki T, Noda SE, Ohno T, Kumazaki Y, Kato S, Nakano T. Dose-volume histogram analysis of composite EQD2 dose distributions using the central shielding technique in cervical cancer radiotherapy. Brachytherapy. 2016;15(5):598–606.CrossRefPubMedGoogle Scholar
  38. 38.
    Kato S, Ohno T, Thephamongkhol K, Chansilpa Y, Yuxing Y, Devi CR, et al. Multi-institutional phase II clinical study of concurrent chemoradiotherapy for locally advanced cervical cancer in East and Southeast Asia. Int J Radiat Oncol Biol Phys. 2010;77(3):751–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Radiation OncologyFukushima Medical UniversityFukushimaJapan

Personalised recommendations