Skip to main content

In Vitro and In Vivo Models of HIV Latency

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1075)

Abstract

Latently infected cells are very infrequent in CD4+ T cells from antiretroviral (ARV) treated individuals, with only approximately one in a million infected CD4+ T cells in blood. Given the low frequency of infected cells in vivo, multiple in vitro latency models have been developed to facilitate investigations into mechanisms of HIV latency, as well as to enable the evaluation of pharmacological and immunological interventions aimed at depleting latently infected cells. These in vitro models include clones of transformed cell lines with integrated HIV proviruses or primary CD4+ T cells from uninfected donors that have been infected with HIV in particular conditions. This chapter presents a description of these various in vitro models, along with an overview of their advantages and limitations.

Preclinical animal models represent a critical bridge between in vitro studies and human clinical trials. Simian immunodeficiency virus (SIV) infection of Indian origin rhesus macaques has been well established as an informative model of HIV infection. Recent years have seen breakthroughs in ARVs that permit the potent suppression of SIV replication, enabling studies of latency and putative curative interventions in this model. Small animal models of HIV infection can be generated by engrafting immunodeficient mice with human immune cells. These “humanized mice” have provided valuable insights into HIV pathogenesis and are under development as models for studying HIV latency. We summarize both the promise of these models and outstanding challenges that remain to be overcome to realize their potential to inform efforts to cure HIV infection.

Keywords

  • HIV latency
  • Cell line latency model
  • Primary cell latency model
  • Nonhuman primate latency model
  • Humanized mice

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-0484-2_10
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-981-13-0484-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 10.1

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Brad Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Whitney, J.B., Brad Jones, R. (2018). In Vitro and In Vivo Models of HIV Latency. In: Zhang, L., Lewin, S. (eds) HIV Vaccines and Cure . Advances in Experimental Medicine and Biology, vol 1075. Springer, Singapore. https://doi.org/10.1007/978-981-13-0484-2_10

Download citation