Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 271 Accesses

Abstract

The proposed cochlear electrode array has a low width while maintaining variable stiffness owing to peripheral blind vias and a tapered structure. Figure 4.1 shows a comparison between the current design and the previous LCP cochlear electrode array, which had a uniform thickness throughout. If a 20-µm line pitch, 0.3-mm-wide electrode site, 16-channel electrode array, with a 0.1-mm laser machining error is assumed, the width of the previous design is 0.5–1.02 mm from the tip to the base, and the width of the proposed design is 0.3–0.36 mm from the tip to the base. The tip and base of the current electrode array can be reduced to 60 and 40% of those of the previous design, respectively (Fig. 4.2). This reduced width and more flexible tip decrease the insertion and extraction forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.D. Greenwood, A cochlear frequency-position function for several species—29 years later. J. Acoust. Soc. Am. 87, 2592–2605 (1990)

    Article  ADS  Google Scholar 

  2. S.J. Rebscher, A. Hetherington, B. Bonham, P. Wardrop, D. Whinney, P.A. Leake, Considerations for design of future cochlear implant electrode arrays: electrode array stiffness, size, and depth of insertion. J. Rehabil. Res. Dev. 45, 731–747 (2008)

    Article  Google Scholar 

  3. R. Shepherd, K. Verhoeven, J. Xu, F. Risi, J. Fallon, A. Wise, An improved cochlear implant electrode array for use in experimental studies. Hear. Res. 277, 20–27 (2011)

    Article  Google Scholar 

  4. S.C. Parisier, P.M. Chute, A.L. Popp, G.D. Suh, Outcome analysis of cochlear implant reimplantation in children. The Laryngoscope 111, 26–32 (2001)

    Article  Google Scholar 

  5. J.N. Fayad, T. Baino, S.C. Parisier, Revision cochlear implant surgery: causes and outcome. Otolaryngol. Head Neck Surg. 131, 429–432 (2004)

    Article  Google Scholar 

  6. S.J. Rebscher, M. Heilmann, W. Bruszewski, N.H. Talbot, R.L. Snyder, M.M. Merzenich, Strategies to improve electrode positioning and safety in cochlear implants. IEEE Trans. Biomed. Eng. 46, 340–352 (1999)

    Article  Google Scholar 

  7. K.S. Min, A study on the liquid crystal polymer-based intracochlear electrode array, Thesis Seoul National University, 2014

    Google Scholar 

  8. B. Bhushan, Adhesion and stiction: mechanisms, measurement techniques, and methods for reduction. J. Vac. Sci. Technol., B 21, 2262–2296 (2003)

    Article  Google Scholar 

  9. C.J. Van Oss, R.J. Good, M.K. Chaudhury, The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J. Colloid Interface Sci. 111, 378–390 (1986)

    Article  ADS  Google Scholar 

  10. J.A. Bierer, S.M. Bierer, J.C. Middlebrooks, Partial tripolar cochlear implant stimulation: spread of excitation and forward masking in the inferior colliculus. Hear. Res. 270, 134–142 (2010)

    Article  Google Scholar 

  11. D. Vellinga, J.J. Briaire, D.M.P. van Meenen, J.H.M. Frijns, Comparison of multipole stimulus configurations with respect to loudness and spread of excitation. Ear Hear. 38, 487–496 (2017)

    Article  Google Scholar 

  12. D. Vellinga, S. Bruijn, J.J. Briaire, R.K. Kalkman, J.H.M. Frijns, Reducing interaction in simultaneous paired stimulation with CI. PLoS ONE 12, e0171071 (2017)

    Article  Google Scholar 

  13. J.A. Bierer, Threshold and channel interaction in cochlear implant users: evaluation of the tripolar electrode configuration. J. Acoust. Soc. Am. 121, 1642–1653 (2007)

    Article  ADS  Google Scholar 

  14. A. Kinloch, Adhesion and Adhesives: Science and Technology (Springer Science & Business Media, 2012)

    Google Scholar 

  15. J. Ordonez, M. Schuettler, C. Boehler, T. Boretius, T. Stieglitz, Thin films and microelectrode arrays for neuroprosthetics. MRS Bull. 37, 590–598 (2012)

    Article  Google Scholar 

  16. A.S. Widge, Self-assembled monolayers of polythiophene “Molecular wires”: a new electrode technology for neuro-robotic interfaces, Thesis Carnegie Mellon University, 2007

    Google Scholar 

  17. W.-S. Kim, I.-H. Yun, J.-J. Lee, H.-T. Jung, Evaluation of mechanical interlock effect on adhesion strength of polymer–metal interfaces using micro-patterned surface topography. Int. J. Adhes. Adhes. 30, 408–417 (2010)

    Article  Google Scholar 

  18. L. Reclaru, J.M. Meyer, Study of corrosion between a titanium implant and dental alloys. J. Dent. 22, 159–168 (1994)

    Article  Google Scholar 

  19. A. Vanhoestenberghe, N. Donaldson, The limits of hermeticity test methods for micropackages. Artif. Organs 35, 242–244 (2011)

    Article  Google Scholar 

  20. K. Aihara, M.J. Chen, C. Cheng, A.V.H. Pham, Reliability of liquid crystal polymer air cavity packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 2, 224–230 (2012)

    Article  Google Scholar 

  21. A.-V. Pham, Packaging with liquid crystal polymer. IEEE Microwave Mag. 5, 83–91 (2011)

    Article  Google Scholar 

  22. J. Jeong, S.H. Bae, J.-M. Seo, H. Chung, S.J. Kim, Long-term evaluation of a liquid crystal polymer (LCP)-based retinal prosthesis. J. Neural Eng. 13, 025004 (2016)

    Article  ADS  Google Scholar 

  23. M. Celina, K.T. Gillen, R.A. Assink, Accelerated aging and lifetime prediction: review of non-Arrhenius behaviour due to two competing processes. Polym. Degrad. Stab. 90, 395–404 (2005)

    Article  Google Scholar 

  24. D.W.L. Hukins, A. Mahomed, S.N. Kukureka, Accelerated aging for testing polymeric biomaterials and medical devices. Med. Eng. Phys. 30, 1270–1274 (2008)

    Article  Google Scholar 

  25. W. Chun, N. Chou, S. Cho, S. Yang, S. Kim, Evaluation of sub-micrometer parylene C films as an insulation layer using electrochemical impedance spectroscopy. Prog. Org. Coat. 77, 537–547 (2014)

    Article  Google Scholar 

  26. A.A.C.M. Lopez, S. Mitra, M. Welkenhuysen, W. Eberle, C. Bartic, R. Puers, R.F. Yazicioglu, G.G.E. Gielen, An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J. Solid-State Circuits 49, 248–261 (2014)

    Article  Google Scholar 

  27. S.W. Lee, K.S. Min, J. Jeong, J. Kim, S.J. Kim, Monolithic encapsulation of implantable neuroprosthetic devices using liquid crystal polymers. IEEE Trans. Biomed. Eng. 58 (2011)

    Google Scholar 

  28. T.M. Gwon, J.H. Kim, G.J. Choi, S.J. Kim, Mechanical interlocking to improve metal–polymer adhesion in polymer-based neural electrodes and its impact on device reliability. J. Mater. Sci. 51, 6897–6912 (2016)

    Article  ADS  Google Scholar 

  29. G.-T. Hwang, D. Im, S.E. Lee, J. Lee, M. Koo, S.Y. Park et al., In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. ACS Nano 7, 4545–4553 (2013)

    Article  Google Scholar 

  30. V. Sundaram, V. Sukumaran, M.E. Cato, F. Liu, R. Tummala, J.D. Weiland et al., High density electrical interconnections in liquid crystal polymer (LCP) substrates for retinal and neural prosthesis applications, in 2011 IEEE 61st Electronic Components and Technology Conference (ECTC) (2011), pp. 1308–1313

    Google Scholar 

  31. T.M. Gwon, C. Kim, S. Shin, J.H. Park, J.H. Kim, S.J. Kim, Liquid crystal polymer (LCP)-based neural prosthetic devices. Biomed. Eng. Lett. 6, 148–163 (2016)

    Article  Google Scholar 

  32. A. Leng, H. Streckel, K. Hofmann, M. Stratmann, The delamination of polymeric coatings from steel Part 3: Effect of the oxygen partial pressure on the delamination reaction and current distribution at the metal/polymer interface. Corros. Sci. 41, 599–620 (1998)

    Article  Google Scholar 

  33. A. Leng, H. Streckel, M. Stratmann, The delamination of polymeric coatings from steel. Part 2: First stage of delamination, effect of type and concentration of cations on delamination, chemical analysis of the interface. Corros. Sci. 41, 579–597 (1998)

    Article  Google Scholar 

  34. A. Leng, H. Streckel, M. Stratmann, The delamination of polymeric coatings from steel. Part 1: Calibration of the Kelvinprobe and basic delamination mechanism. Corros. Sci. 41, 547–578 (1998)

    Article  Google Scholar 

  35. S.W. Lee, J.M. Seo, S. Ha, E.T. Kim, H. Chung, S.J. Kim, Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers. Invest. Ophthalmol. Vis. Sci. 50, 5859–5866 (2009)

    Article  Google Scholar 

  36. K. Aihara, M.J. Chen, A.V. Pham, Development of thin-film liquid-crystal-polymer surface-mount packages for Ka-band applications. IEEE Trans. Microw. Theory Tech. 56, 2111–2117 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Mok Gwon .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gwon, T.M. (2018). Discussion. In: A Polymer Cochlear Electrode Array: Atraumatic Deep Insertion, Tripolar Stimulation, and Long-Term Reliability. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-0472-9_4

Download citation

Publish with us

Policies and ethics