Advertisement

Biomimetic Scaffolds for Bone Tissue Engineering

  • Joon Yeong Park
  • Seung Hun Park
  • Mal Geum Kim
  • Sang-Hyug Park
  • Tae Hyeon Yoo
  • Moon Suk KimEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1064)

Abstract

The use of biomimetic scaffolds for bone tissue engineering has been studied for a long time. Biomimetic scaffolds can assist and accelerate bone regeneration that is similar to that of authentic tissue, which represents the environment of cells in a living organism. Currently, numerous biomaterials have been reported for use as a biomimetic scaffold. This review focuses on the design of biomimetic scaffolds, kinds of biomaterials and methods used to fabricate biomimetic scaffolds, growth factors used with biomimetic scaffold for bone regeneration, mobilization of biological agents into biomimetic scaffolds, and studies on (pre)clinical bone regeneration from biomimetic scaffolds. Then, future prospects for biomimetic scaffolds are discussed.

Keywords

Biomimetic scaffold Biomaterial Bone regeneration Tissue engineering 

Notes

Acknowledgments

This work was supported by a grant from a Basic Science Research Program (2016R1A2B3007448) and Priority Research Centers Program (2010-0028294) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Aamodt JM, Grainger DW (2016) Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials 86:68–82PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahn JH, Lee TH, Oh JS, Kim SY, Kim HJ, Park IK, Choi BS, Im GI (2009) Novel hyaluronate-atelocollagen/beta-TCP-hydroxyapatite biphasic scaffold for the repair of osteochondral defects in rabbits. Tissue Eng Part A 15:2595–2604PubMedCrossRefPubMedCentralGoogle Scholar
  3. Armitage OE, Oyen ML (2015) Hard-soft tissue interface engineering. Adv Exp Med Biol 881:187–204PubMedCrossRefPubMedCentralGoogle Scholar
  4. Barabaschi GD, Manoharan V, Li Q, Bertassoni LE (2015) Engineering pre-vascularized scaffolds for bone regeneration. Adv Exp Med Biol 881:79–94PubMedCrossRefPubMedCentralGoogle Scholar
  5. Behzadi S, Luther GA, Harris MB, Farokhzad OC, Mahmoudi M (2017) Nanomedicine for safe healing of bone trauma: opportunities and challenges. Biomaterials 146:168–182PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bessa PC, Casal M, Reis RL (2008) Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2:81–96PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bhaskar S, Lim S (2017) Engineering protein nanocages as carriers for biomedical applications. NPG Asia Mater 9:e371CrossRefGoogle Scholar
  8. Ceafalan LC, Popescu BO (2016) Juxtacerebral tissue regeneration potential: telocytes contribution. Adv Exp Med Biol 913:397–402PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chen J, Chen H, Li P, Diao H, Zhu S, Dong L, Wang R, Guo T, Zhao J, Zhang J (2011) Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 32:4793–4805PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chen CH, Shyu VB, Chen JP, Lee MY (2014) Selective laser sintered poly-epilson-carprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. Biofabrication 6:015004PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, Noh I (2016) Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomater Res 20:10PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chim SM, Tickner J, Chow ST, Kuek V, Guo B, Zhang G, Rosen V, Erber W, Xu J (2013) Angiogenic factors in bone local environment. Cytokine Growth Factor Rev 24:297–310PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chua ILS, Kim HW, Lee JH (2016) Signaling of extracellular matrices for tissue regeneration and therapeutics. Tissue Eng Regen Med 13:1–12CrossRefGoogle Scholar
  14. Correia C, Bhumiratana S, Yan LP, Oliveira AL, Gimble JM, Rockwood D, Kaplan DL, Sousa RA, Reis RL, Vunjak-Novakovic G (2012) Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomater 8:2483–2492PubMedPubMedCentralCrossRefGoogle Scholar
  15. Correia CR, Reis RL, Mano JF (2015) Multiphasic, multistructured and hierarchical strategies for cartilage regeneration. Adv Exp Med Biol 881:143–160PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cui W, Wang Q, Chen G, Zhou S, Chang Q, Zuo Q, Ren K, Fan W (2011) Repair of articular cartilage defects with tissue-engineered osteochondral composites in pigs. J Biosci Bioeng 111:493–500PubMedCrossRefPubMedCentralGoogle Scholar
  17. Da H, Jia SJ, Meng GL, Cheng JH, Zhou W, Xiong Z, Mu YJ, Liu J (2013) The impact of compact layer in biphasic scaffold on osteochondral tissue engineering. PLoS ONE 8:e54838PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dinh T, Braunagel S, Rosenblum BI (2015) Growth factors in wound healing. the present and the future? Clin Podiatr Med Surg 32:109–119PubMedCrossRefPubMedCentralGoogle Scholar
  19. Domingues RM, Chiera S, Gershovich P, Motta A, Reis RL, Gomes ME (2016) Enhancing the biomechanical performance of anisotropic nanofibrous scaffolds in tendon tissue engineering: reinforcement with cellulose nanocrystals. Adv Healthc Mater 5:1364–1375PubMedCrossRefPubMedCentralGoogle Scholar
  20. Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485PubMedCrossRefPubMedCentralGoogle Scholar
  21. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351PubMedCrossRefPubMedCentralGoogle Scholar
  22. Erisken C, Kalyon DM, Wang H (2008) Functionally graded electrospun polycaprolactone and b-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 29:4065–4073PubMedCrossRefPubMedCentralGoogle Scholar
  23. Fan Z, Guan J (2016) Antifibrotic therapies to control cardiac fibrosis. Biomater Res 20:13PubMedPubMedCentralCrossRefGoogle Scholar
  24. Foroughi MR, Karbasi S, Ebrahimi-Kahrizsangi R (2012) Physical and mechanical properties of a poly-3-hydroxybutyratecoated nanocrystalline hydroxyapatite scaffold for bone tissue engineering. J Porous Mater 19:667–675CrossRefGoogle Scholar
  25. Frezzo JA, Montclare JK (2016) Natural composite systems for bioinspired materials. Adv Exp Med Biol 940:143–166PubMedCrossRefPubMedCentralGoogle Scholar
  26. Fuchs S, Jiang X, Schmidt H, Dohle E, Ghanaati S, Orth C, Hofmann A, Motta A, Migliaresi C, Kirkpatrick CJ (2009) Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Biomaterials 30:1329–1338PubMedCrossRefPubMedCentralGoogle Scholar
  27. Gentile P, Ferreira AM, Callaghan JT, Miller CA, Atkinson J, Freeman C, Hatton PV (2017) Multilayer nanoscale encapsulation of biofunctional peptides to enhance bone tissue regeneration in vivo. Adv Healthc Mater.  https://doi.org/10.1002/adhm.20160118
  28. Gervaso F, Scalera F, Padmanabhan SK, Licciulli A, Deponti D, Giancamillo AD, Domeneghini C, Peretti GM, Sannino A (2012) Development and mechanical characterization of a collagen/hydroxyapatite bilayered scaffold for osteochondral defect replacement. Key Eng Mater 493:890–895Google Scholar
  29. Ghazanfari S, Khademhosseini A, Smit TH (2016) Mechanisms of lamellar collagen formation in connective tissues. Biomaterials 97:74–84PubMedCrossRefPubMedCentralGoogle Scholar
  30. Gotterbarm T, Richter W, Jung M, Berardi Vilei S, Mainil-Varlet P, Yamashita T, Breusch SJ (2006) An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects. Biomaterials 27:3387–3395PubMedCrossRefPubMedCentralGoogle Scholar
  31. Guo X, Zheng Q, Yang S, Shao Z, Yuan Q, Pan Z, Tang S, Liu K, Quan D (2006) Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene. Biomed Mater 1:206–215PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gupta V, Lyne DV, Barragan M, Berkland CJ, Detamore MS (2016) Microsphere-based scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration. J Mater Sci Mater Med 27:121PubMedPubMedCentralCrossRefGoogle Scholar
  33. Han SH, Kim YH, Park MS, Kim IA, Shin JW, Yang WI, Jee KS, Park KD, Ryu GH, Lee JW (2008) Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo. J Biomed Mater Res A 87:850–861PubMedCrossRefGoogle Scholar
  34. He JX, Tan WL, Han QM, Cui SZ, Shao W, Sang F (2016) Fabrication of silk fibroin/cellulose whiskers–chitosan composite porous scaffolds by layer-by-layer assembly for application in bone tissue engineering. J Mater Sci 51:4399–4410CrossRefGoogle Scholar
  35. Holzwarth JM, Ma PX (2011) Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials 32:9622–9629PubMedPubMedCentralCrossRefGoogle Scholar
  36. Huang J, Ten E, Liu G, Finzen M, Yu W, Lee JS, Saiz E, Tomsia AP (2013) Biocomposites of pHEMA with HA/beta-TCP (60/40) for bone tissue engineering: Swelling, hydrolytic degradation, and in vitro behavior. Polymer 54:1197–1207PubMedCrossRefPubMedCentralGoogle Scholar
  37. Huang BJ, Hu JC, Athanasiou KA (2016) Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 98:1–22PubMedPubMedCentralCrossRefGoogle Scholar
  38. Huh J, Lee J, Kim W, Yeo M, Kim G (2017) Preparation and characterization of gelatin/α-TCP/SF biocomposite scaffold for bone tissue regeneration. Int J Biol Macromol.  https://doi.org/10.1016/j.ijbiomac.2017.09.030 PubMedCrossRefPubMedCentralGoogle Scholar
  39. Islam MM, Khan MA, Rahman MM (2015) Preparation of gelatin based porous biocomposite for bone tissue engineering and evaluation of gamma irradiation effect on its properties. Mater Sci Eng C Mater Biol Appl 49:648–655PubMedCrossRefPubMedCentralGoogle Scholar
  40. Jang JY, Park SH, Park JH, Lee BK, Yun JH, Lee B, Kim JH, Min BH, Kim MS (2016) In vivo osteogenic differentiation of human dental pulp stem cells embedded in an injectable in vivo-forming hydrogel. Macromol Biosci 16:1158–1169PubMedCrossRefPubMedCentralGoogle Scholar
  41. Jing Y, Quan C, Liu B, Jiang Q, Zhang C (2016) A mini review on the functional biomaterials based on poly(lactic acid) stereocomplex. Polym Rev 56:262–286CrossRefGoogle Scholar
  42. Kashte S, Jaiswal AK, Kadam S (2017) Artificial bone via bone tissue engineering: current scenario and challenges. Tissue Eng Regen Med 14:1–14CrossRefGoogle Scholar
  43. Kemppainen JM, Hollister SJ (2010) Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. J Biomed Mater Res A 94:9–18PubMedCrossRefPubMedCentralGoogle Scholar
  44. Kim MS, Kim JH, Min BH, Chun HJ, Han DK, Lee HB (2011) Polymeric scaffolds for regenerative medicine. Polym Rev 51:1–30CrossRefGoogle Scholar
  45. Kim DY, Kwon DY, Kwon JS, Kim JH, Min BH, Kim MS (2015) Injectable in situ-forming hydrogels for regenerative medicines. Polym Rev 55:407–452CrossRefGoogle Scholar
  46. Kon E, Filardo G, Delcogliano M, Fini M, Salamanna F, Giavaresi G, Martin I, Marcacci M (2010) Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model. BMC Musculoskelet Disord 11:220PubMedPubMedCentralCrossRefGoogle Scholar
  47. Koupaei N, Karkhaneh A (2016) Porous crosslinked polycaprolactone hydroxyapatite networks for bone tissue engineering. Tissue Eng Regen Med 13:251–260CrossRefGoogle Scholar
  48. Kwon DY, Kwon JS, Park SH, Park JH, Jang SH, Yin XY, Yun JH, Kim JH, Min BH, Lee JH, Kim WD, Kim MS (2015) A computer-designed scaffold for bone regeneration within cranial defect using human dental pulp stem cells. Sci Rep 5:12721PubMedCrossRefPubMedCentralGoogle Scholar
  49. Kwon DY, Park JH, Jang SH, Park JY, Jang JW, Min BH, Kim WD, Lee HB, Lee J, Kim MS (2017) Bone regeneration by means of a three-dimensional printed scaffold in a rat cranial defect. J Tissue Eng Regen Med.  https://doi.org/10.1002/term.2532 PubMedCrossRefPubMedCentralGoogle Scholar
  50. Lee P, Manoukian OS, Zhou G, Wang Y, Chang W, Yu X, Kumbar SG (2016) Osteochondral scaffold combined with aligned nanofibrous scaffolds for cartilage regeneration. RSC Adv 6:72246CrossRefGoogle Scholar
  51. Lee BH, Shirahama H, Kim MH, Lee JH, Cho NJ, Tan LP (2017a) Colloidal templating of highly ordered gelatin methacryloyl-based hydrogel platforms for three-dimensional tissue analogues. NPG Asia Mater 9:e412CrossRefGoogle Scholar
  52. Lee H, Liao JD, Sivashanmugan K, Liu BH, Su YH, Yao CK, Juang YD (2017b) Hydrothermal fabrication of highly porous titanium bio-scaffold with a load-bearable property. Materials 10:e726PubMedCrossRefPubMedCentralGoogle Scholar
  53. Lee WK, Lim YY, Leow AT, Namasivayam P, Ong Abdullah J, Ho CL (2017c) Biosynthesis of agar in red seaweeds: a review. Carbohydr Polym 164:23–30PubMedCrossRefPubMedCentralGoogle Scholar
  54. Li Z, Yang J, Loh XJ (2016) Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Mater 8:e265CrossRefGoogle Scholar
  55. Lin YJ, Huang CC, Wan WL, Chiang CH, Chang Y, Sung HW (2017) Recent advances in CO2 bubble-generating carrier systems for localized controlled release. Biomaterials 133:154–164PubMedCrossRefPubMedCentralGoogle Scholar
  56. Makhni MC, Caldwell JM, Saifi C, Fischer CR, Lehman RA, Lenke LG, Lee FY (2016) Tissue engineering advances in spine surgery. Regen Med 11:211–222PubMedCrossRefPubMedCentralGoogle Scholar
  57. Mastrogiacomo M, Muraglia A, Komlev V, Peyrin F, Rustichelli F, Crovace A, Cancedda R (2005) Tissue engineering of bone: search for a better scaffold. Orthod Craniofac Res 8:277–284PubMedCrossRefPubMedCentralGoogle Scholar
  58. Mitsak AG, Kemppainen JM, Harris MT, Hollister SJ (2011) Effect of polycaprolactone scaffold permeability on bone regeneration in vivo. Tissue Eng Part A 17:1831–1839PubMedPubMedCentralCrossRefGoogle Scholar
  59. Moeinzadeh S, Jabbari E (2015) Morphogenic peptides in regeneration of load bearing tissues. Adv Exp Med Biol 881:95–110PubMedCrossRefPubMedCentralGoogle Scholar
  60. Mondschein RJ, Kanitkar A, Williams CB, Verbridge SS, Long TE (2017) Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials 140:170–188PubMedCrossRefPubMedCentralGoogle Scholar
  61. Monteiro N, Yelick PC (2017) Advances and perspectives in tooth tissue engineering. J Tissue Eng Regen Med 11:2443–2461PubMedCrossRefPubMedCentralGoogle Scholar
  62. Nanditha S, Chandrasekaran B, Muthusamy S, Muthu K (2017) Apprising the diverse facets of platelet rich fibrin in surgery through a systematic review. Int J Surg 46:186–194PubMedCrossRefPubMedCentralGoogle Scholar
  63. Nie H, Ho ML, Wang CK, Wang CH, Fu YC (2009) BMP-2 plasmid loaded PLGA/HAp composite scaffolds for treatment of bone defects in nude mice. Biomaterials 30:892–901PubMedCrossRefPubMedCentralGoogle Scholar
  64. Park JS, Park KH (2016) Light enhanced bone regeneration in an athymic nude mouse implanted with mesenchymal stem cells embedded in PLGA microspheres. Biomater Res 20:4PubMedPubMedCentralCrossRefGoogle Scholar
  65. Park SH, Kwon JS, Lee BS, Park JH, Lee BK, Yun JH, Lee BY, Kim JH, Min BH, Yoo TH, Kim MS (2017) BMP2-immobilized injectable hydrogel for osteogenic differentiation of human periodontal ligament stem cells. Sci Rep 7:6603PubMedPubMedCentralCrossRefGoogle Scholar
  66. Pinel CB, Pluhar GE (2012) Clinical application of recombinant human bone morphogenetic protein in cats and dogs: a review of 13 cases. Can Vet J 53:767–774PubMedPubMedCentralGoogle Scholar
  67. Re’em T, Witte F, Willbold E, Ruvinov E, Cohen S (2012) Simultaneous regeneration of articular cartilage and subchondral bone induced by spatially presented TGF-beta and BMP-4 in a bilayer affinity binding system. Acta Biomater 8:3283–3293PubMedCrossRefPubMedCentralGoogle Scholar
  68. Sánchez M, Anitua E, Delgado D, Sanchez P, Prado R, Orive G, Padilla S (2017) Platelet-rich plasma, a source of autologous growth factors and biomimetic scaffold for peripheral nerve regeneration. Expert Opin Biol Ther 17:197–212PubMedCrossRefPubMedCentralGoogle Scholar
  69. Sartori M, Pagani S, Ferrari A, Costa V, Carina V, Figallo E, Maltarello MC, Martini L, Fini M, Giavaresi G (2017) A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations. Mater Sci Eng C Mater Biol Appl 70:101–111PubMedCrossRefPubMedCentralGoogle Scholar
  70. Senthebane DA, Rowe A, Thomford NE, Shipanga H, Munro D, Mazeedi MAMA, Almazyadi HAM, Kallmeyer K, Dandara C, Pepper MS, Parker MI, Dzobo K (2017) The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. Int J Mol Sci 18:e1586PubMedCrossRefPubMedCentralGoogle Scholar
  71. Shao X, Goh JC, Hutmacher DW, Lee EH, Zigang G (2006) Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng 12:1539–1551PubMedCrossRefPubMedCentralGoogle Scholar
  72. Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M (2017) Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater Res 21:9PubMedPubMedCentralCrossRefGoogle Scholar
  73. Singh D, Singh D, Zo S, Han SS (2014) Nano-biomimetics for nano/micro tissue regeneration. J Biomed Nanotechnol 10:3141–3161PubMedCrossRefPubMedCentralGoogle Scholar
  74. Skylar-Scott MA, Liu MC, Wu Y, Dixit A, Yanik MF (2016) Guided homing of cells in multi-photon microfabricated bioscaffolds. Adv Healthc Mater 5:1233–1243PubMedPubMedCentralCrossRefGoogle Scholar
  75. Smith BT, Shum J, Wong M, Mikos AG, Young S (2015) Bone tissue engineering challenges in oral and maxillofacial surgery. Adv Exp Med Biol 881:57–78PubMedCrossRefPubMedCentralGoogle Scholar
  76. Tatman PD, Gerull W, Sweeney-Easter S, Davis JI, Gee AO, Kim DH (2015) Multiscale biofabrication of articular cartilage: bioinspired and biomimetic approaches. Tissue Eng Part B Rev 21:543–559PubMedCrossRefPubMedCentralGoogle Scholar
  77. Tracy CJ, Sanders DN, Bryan JN, Jensen CA, Castaner LJ, Kirk MD, Katz ML (2016) Intravitreal implantation of genetically modified autologous bone marrow-derived stem cells for treating retinal disorders. Adv Exp Med Biol 854:571–577PubMedPubMedCentralCrossRefGoogle Scholar
  78. Wang W, Caetano G, Ambler WS, Blaker JJ, Frade MA, Mandal P, Diver C, Bártolo P (2016) Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials 9:992PubMedCentralCrossRefPubMedGoogle Scholar
  79. Wang Z, Wang Z, Lu WW, Zhen W, Yang D, Peng S (2017) Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater 9:e435CrossRefGoogle Scholar
  80. Wongwitwichot P, Kaewsrichan J, Chua KH, Ruszymah BH (2010) Comparison of TCP and TCP/HA hybrid scaffolds for osteoconductive activity. Open Biomed Eng J 4:279–285PubMedPubMedCentralCrossRefGoogle Scholar
  81. Wu F, Liu C, O’Neil B, Wei J, Ngothai Y (2012) Fabrication and properties of porous scaffold of magnesium phosphate/polycaprolactone biocomposite for bone tissue engineering. Appl Surf Sci 258:7589–7595CrossRefGoogle Scholar
  82. Xu R, Taskin MB, Rubert M, Seliktar D, Besenbacher F, Chen M (2015) hiPS-MSCs differentiation towards fibroblasts on a 3D ECM mimicking scaffold. Sci Rep 5:8480PubMedPubMedCentralCrossRefGoogle Scholar
  83. Yao H, Kang J, Li W, Liu J, Xie R, Wang Y, Liu S, Wang DA, Ren L (2017) Novel beta-TCP/PVA bilayered hydrogels with considerable physical and bio-functional properties for osteochondral repair. Biomed Mater.  https://doi.org/10.1088/1748-605X/aa8541 PubMedCrossRefPubMedCentralGoogle Scholar
  84. Yin L, Yuvienco C, Montclare JK (2017) Protein based therapeutic delivery agents: contemporary developments and challenges. Biomaterials 134:91–116PubMedPubMedCentralCrossRefGoogle Scholar
  85. Zhang S, Chen L, Jiang Y, Cai Y, Xu G, Tong T, Zhang W, Wang L, Ji J, Shi P, Ouyang HW (2013) Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater 9:7236–7247PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Joon Yeong Park
    • 1
  • Seung Hun Park
    • 1
  • Mal Geum Kim
    • 1
  • Sang-Hyug Park
    • 2
  • Tae Hyeon Yoo
    • 1
  • Moon Suk Kim
    • 1
    Email author
  1. 1.Department of Molecular Science and TechnologyAjou UniversitySuwonSouth Korea
  2. 2.Department of Biomedical EngineeringPukyong National UniversityBusanSouth Korea

Personalised recommendations