Skip to main content

Computational Approaches to Understand the Genome and Protein Sequences of Fungi

  • Chapter
  • First Online:
Book cover Fungi and their Role in Sustainable Development: Current Perspectives

Abstract

Fungi are large group of organism with tremendous diversity and economical importance. Application of bioinformatics approaches to understand the development and growth of organisms has a great scope. Bioinformatics is one of the rapidly emerging branches of science, which helps in understanding biological systems by using computer softwares and tools. The huge amount of data generated in life sciences on a daily basis from several projects is the major driving force for the growth and development of bioinformatics. Bioinformatics, also known as computational biology, is used to analyze genes, proteins, and genomes. Computational tools of genome, transcriptome, or exome analysis are very essential to make a meaning from this tremendous amount of data. In this chapter, I have described the bioinformatics approaches (databases and tools) that can be used in the better understanding of the fungi genes, proteins, and genomes. I have also discussed about the implication of next-generation sequencing technology (NGS) tools on fungi genetics and genomes. Application of these tools and databases to understand the fungi genome and transcriptome will have tremendous effect on development, improvement, and sustainable cultivation of fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamson M, Jonsdottir S, Olafsson I, Jensson O, Grubb A (1992) Hereditary cystatin C amyloid angiopathy: identification of the disease-causing mutation and specific diagnosis by polymerase chain reaction based analysis. Hum Genet 89:377–380

    Article  CAS  PubMed  Google Scholar 

  • Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. I. General method. J Chem Phys 31:459

    Article  CAS  Google Scholar 

  • Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M et al (2004) UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 32:D115–D119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJ, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  CAS  PubMed  Google Scholar 

  • Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantarel BL, Korf I, Robb SMC, Parra G, Ross E, Moore B, Holt C, Sánchez Alvarado A, Yandell M (2008) MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 18:188–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  • Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP – phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K et al (2013) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  CAS  Google Scholar 

  • Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C et al (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261

    Article  CAS  PubMed  Google Scholar 

  • Heng Li1, Handsaker B, Wysoker A, Fennell T, Jue Ruan NH, Marth G, Goncalo Abecasis RD (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  CAS  Google Scholar 

  • Jones S, Thornton JM (1995) Protein-protein interactions: a review of protein dimer structures. Prog Biophys Mol Biol 63:31–65

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666

    Article  CAS  PubMed  Google Scholar 

  • Knudsen M, Wiuf C (2010) The CATH database. Hum Genomics 4:207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Lee E, Harris N, Gibson M, Chetty R, Lewis S (2009) Apollo: a community resource for genome annotation editing. Bioinformatics 25:1836–1837

    Article  CAS  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Marçais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:764–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:W20–W25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    PubMed  CAS  Google Scholar 

  • Pandini A, Fornili A, Fraternali F, Kleinjung J (2013) GSATools: analysis of allosteric communication and functional local motions using a structural alphabet. Bioinformatics 29:2053–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pugalenthi G, Archunan G, Sowdhamini R (2005) DIAL: a web-based server for the automatic identification of structural domains in proteins. Nucleic Acids Res 33:W130–W132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pugalenthi G, Shameer K, Srinivasan N, Sowdhamini R (2006) HARMONY: a server for the assessment of protein structures. Nucleic Acids Res 34:W231–W234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert V, Vu D, Amor ABH, van de Wiele N, Brouwer C, Jabas B, Szoke S, Dridi A, Triki M, Ben DS et al (2013) MycoBank gearing up for new horizons. IMA Fungus 4:371–379

    Article  PubMed  PubMed Central  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  • Scott WRP, Hünenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krüger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103:3596–3607

    Article  CAS  Google Scholar 

  • Shen M-Y, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanke M, Morgenstern B (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33:W465–W467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kumar Upadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upadhyay, A.K., Sharma, G. (2018). Computational Approaches to Understand the Genome and Protein Sequences of Fungi. In: Gehlot, P., Singh, J. (eds) Fungi and their Role in Sustainable Development: Current Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-13-0393-7_34

Download citation

Publish with us

Policies and ethics