Skip to main content

Fungi as Biocontrol Agent: An Alternate to Chemicals

  • Chapter
  • First Online:
Fungi and their Role in Sustainable Development: Current Perspectives

Abstract

To increase production, we are using fungicides indiscriminately leading to much negative effect on humans, animals and environment. An alternative to these fungicide is application of biological control agents which not only helps directly in management of diseases below economic threshold level but also have many folds beneficial effect on growth and production. Out of these biocontrol agent’s fungus plays very important role. These fungi are ubiquitous in nature, and many strains are present within the species making it more specific against insects and diseases. They are self-sustainable since spores are the means by which the infection occurs, which are produced in large numbers and are produced continuously as long as the growth conditions for it remain favourable. Thus, cost of application is also reduced. Moreover, their handing and application are also convenient, and they neither cause any harmful effect to humans and livestock nor cause any other environmental issues. The main advantage is that they readily fit into the integrated management programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Altomare C, Norvell WA, Björkma T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum. Appl Environ Microbiol 65(7):2926–2933

    PubMed  PubMed Central  CAS  Google Scholar 

  • Anke H, Stadler M, Mayer A, Sterner O (1995) Secondary metabolites with nematicidal and antimicrobial activity from nematophagous fungi and ascomycetes. Can J Bot 73:932–939

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1997) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens–an overview of the mechanisms involved. Mycorrhiza 6(6):457–464

    Article  Google Scholar 

  • Baker KF, Cook RJ (1974) Biological control of plant pathogens. WH Freeman and Company, San Francisco

    Google Scholar 

  • Bassi A (1835) English translation by Yarrow PJ. 1958. On the mark disease, calcinacccio or muscardine, a disease that affects silk worms. Ainsworth GC, Yarrow PJ (ed) APS Phytopathol. Classics 10:1–49

    Google Scholar 

  • Boyette CD, Quimby PC Jr, Bryson CT, Egley GH, Fulgham FE (1993) Biological control of hemp sesbania (Sesbania exaltata) under field conditions with Colletotrichum truncatum formulated in an invert emulsion. Weed Sci:497–500

    Google Scholar 

  • Butt TM, Copping LG (2000) Fungal biological control agents. Pestic Outlook 11(5):186–191

    Article  Google Scholar 

  • Callow M, Drmanac R, Drmanac S, Callow MJ, Drmanac Radoje T (2003) Universal selective genome amplification and universal genotyping system. US Patent Application 10:608–293

    Google Scholar 

  • Castillo MA, Moya P, Hernández E, Primo-Yufera E (2000) Susceptibility of Ceratitis capitata Wiedemann (Diptera: Tephritidae) to entomopathogenic fungi and their extracts. Biol Control 19(3):274–282

    Article  Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc Lond Ser B Biol Sci 366(1573):1987

    Article  Google Scholar 

  • Chet H, Baker R (1981) Isolation and biocontrol potential of Trichoderma hamatum from soil naturally suppressive to Rhizoctonia solarti. Phytopathology 71:286–290

    Article  Google Scholar 

  • Chet I, Inbar J (1994) Biological control of fungal pathogens. Appl Biochem Biotechnol 48(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society, St. Paul

    Google Scholar 

  • Dahiya JS, Singh DP (1985) Inhibitory effects of Aspergillus niger culture filtrate on mortality and hatching of larvae of Meloidogyne sps. Plant Soil 86(1):145–146

    Article  Google Scholar 

  • de Leij FAAM, Kerry BR (1991) The nematophagous fungus Verticillium chlamydosporium as a potential biocontrol agent for Meloidogyne arenaria. Revue de Ne’matologie 14:157–164

    Google Scholar 

  • De Vrije T, Antoine N, Buitelaar RM, Bruckner S, Dissevelt M, Durand A, Gerlagh M, Jones EE, Lüth P, Oostra J, Ravensberg WJ (2001) The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Appl Microbiol Biotechnol 56(1):58–68

    Article  PubMed  Google Scholar 

  • Duarte VS, Silva RA, Wekesa VW, Rizzato FB, Dias CTS, Delalibera I (2009) Impact of natural epizootics of the fungal pathogen Neozygites floridana (Zygomycetes: Entomophthorales) on population dynamics of Tetranychus evansi (Acari: Tetranychidae) in tomato and nightshade. Biol Control 51(1):81–90

    Article  Google Scholar 

  • Elad Y (2000) Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Prot 19(8):709–714

    Article  Google Scholar 

  • Elad Y, Zvieli Y, Chet I (1986) Biological control of Macrophomina phaseolina (Tassi) Goid by Trichoderma harzianum. Crop Prot 5(4):288–292

    Article  Google Scholar 

  • Emge RG, Melching JS, Kingsolver CH (1981) Epidemiology of Puccinia chondnllina, a rust pathogen for the biological control of rush skeleton weed in the United States. Phytopathology 7:839–843

    Article  Google Scholar 

  • Evans HC (1987) Fungal pathogens of some subtropical and tropical weeds and the possibilities for biological control. Biocontrol News Inf 8(1):7–30

    Google Scholar 

  • Ferron P (1971) Influence of relative humidity on development of fungal infection caused by Beauveria bassiana. Entomol Exp Appl 14:57–76

    Article  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, Ceryngier P, Liira J, Tscharntke T, Winqvist C, Eggers S (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11(2):97–105

    Article  CAS  Google Scholar 

  • Goldrnan GH, Vasseur V, Contreras R, van Montagu M (1994) Sequence analysis and expression studies of a gene encoding a novel serine + alanine-rich protein in Trichoderma harzianum. Gene 144:113–117

    Article  Google Scholar 

  • Gupta S, Dikshit AK (2010) Biopesticides: an ecofriendly approach for pest control. J Biopest 3(1):186–188

    Google Scholar 

  • Hamlen RA (1979) Biological control of insects and mites on European greenhouse crops: research and commercial implementation. Proce Florida State Hort Soci 92:367–368

    Google Scholar 

  • Haseeb A, Ahmad V, Shukla PK (2005) Comparative efficacy of pesticides, bio-control agents and botanicals against Meloidogyne incognita-fusarium oxysporum disease complex on Vigna mungo. Ann Plant Prot Sci 13(2):434–437

    Google Scholar 

  • Ignoffo CM (1981) The fungus Nomuraea rileyi as a microbial insecticide: fungi. In: Burges HD (ed) Microbial control of pests and plant diseases. Academic Press, London, pp 513–538

    Google Scholar 

  • Ikeda KI, Nakamura H, Matsumoto N (2003) Mycelial incompatibility operative in pairings between single basidiospore isolates of Helicobasidium mompa. Mycol Res 107(7):847–853

    Article  CAS  PubMed  Google Scholar 

  • Inbar J, Menendez A, Chet I (1996) Hyphal interaction between Trichoderma harzianum and Sclerotinia sclerotiorum and its role in biological control. Soil Biol Biochem 28:757–763

    Article  CAS  Google Scholar 

  • Islam M, Castle SJ, Ren S (2010) Compatibility of the insect pathogenic fungus Beauveria bassiana with neem against sweet potato whitefly, Bemisia tabaci, on eggplant. Entomol Exp Appl 134(1):28–34

    Article  Google Scholar 

  • Jackson MA (1997) Optimizing nutritional conditions for the liquid culture production of effective fungal biological control agents. J Ind Microbiol Biotechnol 19(3):180–187

    Article  CAS  Google Scholar 

  • Jain N, Rana IS, Kanojiya A, Sandhu SS (2008) Characterization of Beauveria bassiana strains based on protease and lipase activity and their role in pathogenicity. J Basic Appl Mycol I-II:18–22

    Google Scholar 

  • Jatala P (1985) Biological control of nematodes. An advanced treatise on Meloidogyne. Biol Control 1:303–308

    Google Scholar 

  • Jatala P (1986) Biological control of plant-parasitic nematodes. Annu Rev Phytopathol 24(1):453–489

    Article  Google Scholar 

  • Julien MH, White G (1997) Biological control of weeds: theory and practical application. Canberra, Australian Centre for International Agricultural Research

    Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38(1):423–441

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Lee MH, Yoon CS, Kim HS, Yoo JK, Kim KC (2002) Control of cotton aphid and greenhouse whitefly with a fungal pathogen. J Nat Inst Agric Sci Technol:7–14

    Google Scholar 

  • Kiss L (2003) A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manag Sci 59(4):475–483

    Article  CAS  PubMed  Google Scholar 

  • Kumar S (2012) Biopesticides: a need for food and environmental safety. J Biofertil Biopestic 3(4):1–3

    Google Scholar 

  • Lacey LA, Liu TX, Buchman JL, Munyaneza JE, Goolsby JA, Horton DR (2011) Entomopathogenic fungi (Hypocreales) for control of potato psyllid, Bactericera cockerelli (Šulc)(Hemiptera: Triozidae) in an area endemic for zebra chip disease of potato. Biol Control 56:271–278

    Article  Google Scholar 

  • Lee SH, Lee S, Choi D, Lee YW, Yun SH (2006) Identification of the down-regulated genes in a mat1-2-deleted strain of Gibberella zeae, using cDNA subtraction and microarray analysis. Fungal Genet Biol 43:295–310

    Article  CAS  PubMed  Google Scholar 

  • Mani A, Sethi CL (1984) Effect of culture filtrates of Fusarium oxysporum f. Sp. ciceri and Fusarium solani on hatching and juvenile mobility of Meloidogyne incognita. Nematropica 14(2):139–144

    Google Scholar 

  • Mejía LC, Rojas EI, Maynard Z, Van Bael S, Arnold AE, Hebbar P, Samuels GJ, Robbins N, Herre EA (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46(1):4–14

    Article  Google Scholar 

  • Murali M, Amruthesh KN, Sudisha J, Niranjana SR, Shetty HS (2012) Screening for plant growth promoting fungi and their ability for growth promotion and induction of resistance in pearl millet against downy mildew disease. J Phytology 4(5):1

    Google Scholar 

  • Nirwan B, Choudhary S, Sharma K, Singh S (2016) In vitro studies on management of root rot disease caused by Ganoderma lucidum in on Prosopis cineraria. Curr Life Sci 2(4):118–126

    Google Scholar 

  • Sandhu SS, Rajak RC, Agarwal GP (1993) Studies on prolonged storage of Beauveria bassiana conidia: effects of temperature and relative humidity on conidial viability and virulence against chickpea borer Helicoverpa armigera. Biocont Sci Technol 3:47–53

    Article  Google Scholar 

  • Schwarz M, Köpcke B, Weber RW, Sterner O, Anke H (2004) 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 65(15):2239–2245

    Article  CAS  PubMed  Google Scholar 

  • Seryczynska H, Bajan C (1975) Defensive reactions of L3, L4 larvae of the Colorado beetle to the insecticidal fungi Paecilomyces farinosus (Dicks) Brown et Smith, Paecilomyces fumoso-roseus (Wize), Beauveria bassiana (Bols/Vuill.) (Fungi Imperfecti: Moniliales). Bulletin de l’Academie Polonaise des Sciences 23(4):267–271

    Google Scholar 

  • Sharon E, Bar-Eyal M, Chet I, Herrera-Estrella A, Kleifel O, Spiegel Y (2001) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91(7):687–693

    Article  CAS  PubMed  Google Scholar 

  • Sheppard AW (2003) Prioritising agents based on predicted efficacy: beyond the lottery approach. CRC for Australian weed management technical series, vol 7, pp 11–22

    Google Scholar 

  • Shi W, Feng M (2004a) Ovicidal activity of two fungal pathogens (Hyphomycetes) against Tetranychus cinnabarinus (Acarina: Tetranychidae). Chin Sci Bull 49(3):263–267

    Google Scholar 

  • Shi WB, Feng MG (2004b) Lethal effect of Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces fumosoroseus on the eggs of Tetranychus cinnabarinus (Acari: Tetranychidae) with a description of a mite egg bioassay system. Biol Control 30(2):165–173

    Article  Google Scholar 

  • Siddiqui ZA, Mahmood I (1996) Biological control of plant parasitic nematodes by fungi: a review. Bioresour Technol 58(3):229–239

    Article  CAS  Google Scholar 

  • Sneh B (1998) Use of non-pathogenic or hypovirulent fungal strains to protect plants against closely related fungal pathogens. Biotechnol Adv 16(1):1–32

    Article  CAS  PubMed  Google Scholar 

  • Tabin T, Arunachalam A, Shrivastava K, Arunachalam K (2009) Effect of arbuscular mycorrhizal fungi on damping-off disease in Aquilaria agallocha Roxb. Seedlings. Trop Ecol 50(2):243

    Google Scholar 

  • Thomas MB, Read AF (2007) Can fungal biopesticides control malaria? Nat Rev Microbiol 5(5):377

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40(1):1–10

    Article  CAS  Google Scholar 

  • Weindling R (1932) Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 22(8):837–845

    Google Scholar 

  • Wraight SP, Carruthers RI, Jaronski ST, Bradley CA, Garza CJ, Galani-Wraight S (2000) Evaluation of the entomopathogenic fungi Beauveria bassiana and Paecilomyces fumosoroseus for microbial control of the silver leaf whitefly, Bemisia argentifolii. Biol Control 17:203–217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., Bhatnagar, S., Choudhary, S., Nirwan, B., Sharma, K. (2018). Fungi as Biocontrol Agent: An Alternate to Chemicals. In: Gehlot, P., Singh, J. (eds) Fungi and their Role in Sustainable Development: Current Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-13-0393-7_2

Download citation

Publish with us

Policies and ethics