Friction Stir Welding for Joining of Polymers

  • Debasish Mishra
  • Santosh K. Sahu
  • Raju P. Mahto
  • Surjya K. PalEmail author
  • Kamal Pal
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)


The chapter focuses on the welding of thermoplastic polymers. The use of thermoplastics has increased tremendously in the manufacturing industries due to their light-weight characteristic. A detailed study regarding the polymers has been presented and the importance of thermoplastics has also been outlined. The joining technique which has been used in the present work is Friction Stir Welding (FSW). FSW has been one of the major achievements in the field of current welding technologies. Since its invention, the process has been under tremendous research and has been employed to join different metallic alloys of aluminium, magnesium, copper, titanium, etc. The process has also been used to join materials in different joint configurations. Recently, it has been used to weld the thermoplastic materials. An introduction to the FSW technique, the working elements of the process and its constituents have been presented in the chapter. Before the discussion of application of FSW to thermoplastic joining, the other available methods to join thermoplastics such as adhesive bonding and mechanical fastening have been discussed. The literature available with respect to the joining of thermoplastics using FSW has been discussed followed by an experimental study on high density polyethylene (HDPE) sheets. The results of the study have been presented and the relevant conclusions have been drawn.


Thermoplastics Polymer Joining Light-weight Friction stir welding 


  1. 1.
    Chawla, K.K.: Composite Materials. Springer, New York (1998)CrossRefGoogle Scholar
  2. 2.
    Norris, G., Wagner, M.: Boeing 787 Dreamliner (2009). Available:
  3. 3.
    Plastics—The Facts 2010, An analysis of European plastics production, demand and waste data (2010)Google Scholar
  4. 4.
    Fried, J.R.: Polymer Science and Technology, 3rd edn., vol. 40, no. 6. Prentice Hall, Englewood Cliffs (2014)Google Scholar
  5. 5.
    Amancio Filho, S.T.: Friction riveting development and analysis of a new joining technique for polymer-metal multi-material structures (2011)Google Scholar
  6. 6.
    Kah, P., Suoranta, R., Martikainen, J., Magnus, C.: Techniques for joining dissimilar materials: Metals and polymers. Rev. Adv. Mater. Sci. 36, 152–164 (2014)Google Scholar
  7. 7.
    Raithel, S.T.: Kunstoffe International, Lightweight and Innovative (2015). Available: Accessed 28 Mar 2016
  8. 8.
    Tanasa, F., Zanoaga, M.: Fiber-reinforced polymer composites as structural materials for aeronautics. In: International Conference of Scientific Paper. AFASES (2013)Google Scholar
  9. 9.
    Sabreen, S.: Preparing plastics for paintings. Adhesives and Adhesion (2012). Available: Accessed 20-Jun-2017
  10. 10.
    Yousefpour, A., Hojjati, M., Immarigeon, J.-P.: Fusion bonding/welding of thermoplastic composites. J. Thermoplast. Compos. Mater. 17(4), 303–341 (2004)CrossRefGoogle Scholar
  11. 11.
    Messler, R.W.: Joining composite materials and structures: some thought-provoking possibilities. J. Thermoplast. Compos. Mater. 17(1), 51–75 (2004)CrossRefGoogle Scholar
  12. 12.
    Magness, F.H.: Joining of polymer composite materials—a survey, pp. 1–16. Mechanics of Materials Group, Engineering Science Division (1990)Google Scholar
  13. 13.
    Vinson, J.R.: Adhesive bonding of polymer composites. Polym. Eng. Sci. 29(19), 1325–1331 (1989)CrossRefGoogle Scholar
  14. 14.
    Adhesive Bonding of Composites. Available: bonding of composites_0.pdf. [Accessed: 20-Jun-2017]
  15. 15.
    Ashcroft, I.A., Hughes, D.J., Shaw, S.J.: Adhesive bonding of fibre reinforced polymer composite materials. Assem. Autom. 20(2), 150–161 (2000)CrossRefGoogle Scholar
  16. 16.
    Ritter, D.G.W.: Bonding of plastics. In: SPE ANTEC Indianapolis, pp. 562–564 (2016)Google Scholar
  17. 17.
    Baldwin, T.R.: Anaerobic adhesives. Mater. Sci. Technol. 2(1), 1–7 (1986)CrossRefGoogle Scholar
  18. 18.
    Thomas, W.M.: Fiction stir butt welding. PCT/GB92, 9125978.8 (1991)Google Scholar
  19. 19.
    Thomas, W.M., Johnson, K.I., Wiesner, C.S.: Friction stir welding-recent developments in tool and process technologies. Adv. Eng. Mater. 5(7), 485–490 (2003)CrossRefGoogle Scholar
  20. 20.
    Dawes, C.J.: An introduction to friction stir welding and its development. Weld. Met. Fabr. 63, 13 (1995)Google Scholar
  21. 21.
    Elangovan, K., Balasubramanian, V.: Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. J. Mater. Process. Technol. 200(1–3), 163–175 (2008)CrossRefGoogle Scholar
  22. 22.
    Jain, R., et al.: Friction stir welding: scope and recent development, pp. 179–229 (2015)Google Scholar
  23. 23.
    Mishra, R.S., Ma, Z.Y.: Friction Stir Welding and Processing, vol. 50 (2005)Google Scholar
  24. 24.
    Neto, D.M., Neto, P.: Numerical modeling of friction stir welding process: a literature review. Int. J. Adv. Manuf. Technol. 65(1–4), 115–126 (2013)CrossRefGoogle Scholar
  25. 25.
    Lohwasser, D., Chen, Z: Friction stir welding related titles (2010)CrossRefGoogle Scholar
  26. 26.
    Kumar, A., Mahapatra, M.M., Jha, P.K., Mandal, N.R., Devuri, V.: Influence of tool geometries and process variables on friction stir butt welding of Al-4.5%Cu/TiC in situ metal matrix composites. Mater. Des. 59, 406–414 (2014)CrossRefGoogle Scholar
  27. 27.
    Salari, E., Jahazi, M., Khodabandeh, A., Ghasemi-Nanesa, H.: Influence of tool geometry and rotational speed on mechanical properties and defect formation in FS lap welded 5456 Al alloy sheets.pdf, vol. 58, pp. 381–389 (2014)Google Scholar
  28. 28.
    Vijay, S.J., Murugan, N.: Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al-10wt.% TiB2 metal matrix composite. Mater. Des. 31(7), 3585–3589 (2010)CrossRefGoogle Scholar
  29. 29.
    Malarvizhi, S., Balasubramanian, V.: Influences of tool shoulder diameter to plate thickness ratio (D/T) on stir zone formation and tensile properties of friction stir welded dissimilar joints of AA6061 aluminum-AZ31B magnesium alloys. Mater. Des. 40, 453–460 (2012)CrossRefGoogle Scholar
  30. 30.
    Pixel by pixel, a masterpiece (2017). Available: Accessed 10 May 2017
  31. 31.
    Kusuda, Y.: Honda develops robotized FSW technology to weld steel and aluminum and applied it to a mass-production vehicle. Ind. Robot An Int. J. 40(3), 208–212 (2013)CrossRefGoogle Scholar
  32. 32.
    Toros, S., Ozturk, F., Kacar, I.: Review of warm forming of aluminum-magnesium alloys. J. Mater. Process. Technol. 207(1–3), 1–12 (2008)CrossRefGoogle Scholar
  33. 33.
    Galvão, I., Verdera, D., Gesto, D., Loureiro, A., Rodrigues, D.M.: Influence of aluminium alloy type on dissimilar friction stir lap welding of aluminium to copper. J. Mater. Process. Technol. 213(11), 1920–1928 (2013)CrossRefGoogle Scholar
  34. 34.
    Li, X.W., Zhang, D.T., Qiu, C., Zhang, W.: Microstructure and mechanical properties of dissimilar pure copper/1350 aluminum alloy butt joints by friction stir welding. Trans. Nonferrous Met. Soc. China (English Ed.) 22(6), 1298–1306 (2012)CrossRefGoogle Scholar
  35. 35.
    Tan, C.W., Jiang, Z.G., Li, L.Q., Chen, Y.B., Chen, X.Y.: Microstructural evolution and mechanical properties of dissimilar Al-Cu joints produced by friction stir welding. Mater. Des. 51, 466–473 (2013)CrossRefGoogle Scholar
  36. 36.
    Bond Integrity in Aluminum-Copper Clad Metals. Materion Tech Briefs, Lincoln, USA. Available: Accessed 03 May 2017
  37. 37.
    Li, B., Zhang, Z., Shen, Y., Hu, W., Luo, L.: Dissimilar friction stir welding of Ti-6Al-4V alloy and aluminum alloy employing a modified butt joint configuration: Influences of process variables on the weld interfaces and tensile properties. Mater. Des. 53, 838–848 (2014)CrossRefGoogle Scholar
  38. 38.
    Hassan, S.F., Gupta, M.: Development of high strength magnesium copper based hybrid composites with enhanced tensile properties. Mater. Sci. Technol. 19(2), 253–259 (2003)CrossRefGoogle Scholar
  39. 39.
    Kallee, S.W., Russell, M.J., Delany, F.: Friction stir welding of aluminium ships (2007). Available:
  40. 40.
    Davenport, J., Kallee, S.W., Wylde, J.G.: Creating a stir in the rail industry (2015). Available:
  41. 41.
  42. 42.
    Arbegast, W.J.: A flow-partitioned deformation zone model for defect formation during friction stir welding. Scr. Mater. 58(5), 372–376 (2008)CrossRefGoogle Scholar
  43. 43.
    Mishra, R.S., Mahoney, M.W.: Friction Stir Welding and Processing. ASM International, p. 368 (2007)Google Scholar
  44. 44.
    Nandan, R., Debroy, T., Bhadeshia, H.: Recent advances in friction-stir welding—process, weldment structure and properties. Prog. Mater Sci. 53(6), 980–1023 (2008)CrossRefGoogle Scholar
  45. 45.
    Strand, S.: Joining plastics—can friction stir welding compete? In: Proceedings: Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Technology Conference (Cat. No.03CH37480), pp. 321–326 (2003)Google Scholar
  46. 46.
    Kiss, Z., Czigány, T.: Applicability of friction stir welding in polymeric materials. Period. Polytech. Mech. Eng. 51(1), 15 (2007)CrossRefGoogle Scholar
  47. 47.
    Scialpi, A., Troughton, M., Andrews, S., De Filippis, L.A.C.: In-line reciprocating friction stir welding of plastics. Join. Plast. von Kunststoffen Mag. 1, 1–9 (2007)Google Scholar
  48. 48.
    Nelson, T.W., Sorensen, C.D., John, C.J.: Friction stir welding of polymeric materials. US 6,811,632 B2 (2009)Google Scholar
  49. 49.
    Strand, S.R.: Effects of friction stir welding on polymer microstructure (2004)Google Scholar
  50. 50.
    Mendes, N., Loureiro, A., Martins, C., Neto, P., Pires, J.N.: Effect of friction stir welding parameters on morphology and strength of acrylonitrile butadiene styrene plate welds. Mater. Des. 58, 457–464 (2014)CrossRefGoogle Scholar
  51. 51.
    Pirizadeh, M., Azdast, T., Rash Ahmadi, S., Mamaghani Shishavan, S., Bagheri, A.: Friction stir welding of thermoplastics using a newly designed tool. Mater. Des. 54, 342–347 (2014)CrossRefGoogle Scholar
  52. 52.
    Panneerselvam, K., Lenin, K.: Joining of Nylon 6 plate by friction stir welding process using threaded pin profile. Mater. Des. 53, 302–307 (2014)CrossRefGoogle Scholar
  53. 53.
    Ahmadi, H., Arab, N.B.M., Ghasemi, F.A., Farsani, R.E.: Influence of pin profile on quality of friction stir lap welds in carbon fiber reinforced polypropylene composite. Int. J. Mech. Appl. 2(3), 24–28 (2012)Google Scholar
  54. 54.
    Mendes, N., Loureiro, A., Martins, C., Neto, P., Pires, J.N.: Effect of friction stir welding parameters on morphology and strength of acrylonitrile butadiene styrene plate welds. Mater. Des. 58, 457–464 (2014)CrossRefGoogle Scholar
  55. 55.
    Mendes, N., Loureiro, A., Martins, C., Neto, P., Pires, J.N.: Morphology and strength of acrylonitrile butadiene styrene welds performed by robotic friction stir welding. Mater. Des. 64, 81–90 (2014)CrossRefGoogle Scholar
  56. 56.
    Arici, A., Sinmaz, T.: Effects of double passes of the tool on friction stir welding of polyethylene. J. Mater. Sci. 40(12), 3313–3316 (2005)CrossRefGoogle Scholar
  57. 57.
    Aydin, M.: Effects of welding parameters and pre-heating on the friction stir welding of UHMW-polyethylene. Polym. Plast. Technol. Eng. 49(6), 595–601 (2010)CrossRefGoogle Scholar
  58. 58.
    Bozkurt, Y.: The optimization of friction stir welding process parameters to achieve maximum tensile strength in polyethylene sheets. Mater. Des. 35, 440–445 (2012)CrossRefGoogle Scholar
  59. 59.
    Payganeh, G.H., Arab, N.B.M., Asl, Y.D., Ghasemi, F.A., Boroujeni, M.S.: Effects of friction stir welding process parameters on appearance and strength of polypropylene composite welds. Int. J. Phys. Sci. 6(19), 4595–4601 (2011)Google Scholar
  60. 60.
    Jaiganesh, V., Maruthu, B., Gopinath, E.: Optimization of process parameters on friction stir welding of high density polypropylene plate. Procedia Eng. 97, 1957–1965 (2014)CrossRefGoogle Scholar
  61. 61.
    Melendez, M., Tang, W., Schmidt, C., McClure, J.C., Nunes, A.C., Murr, L.E.: Tool forces developed during friction stir welding, pp. 1–38 (2013)Google Scholar
  62. 62.
    Squeo, E.A., Bruno, G., Guglielmotti, A., Quadrini, F.: Friction stir welding of polyethylene sheets. Ann. “DUNĂREA JOS” Univ. Galati Fascicle V Technol. Mach. Build. 241–146 (2009)Google Scholar
  63. 63.
    Bagheri, A., Azdast, T., Doniavi, A.: An experimental study on mechanical properties of friction stir welded ABS sheets. Mater. Des. 43, 402–409 (2013)CrossRefGoogle Scholar
  64. 64.
    Shazly, M., El-raey, M.: Friction stir welding of polycarbonate sheets, pp. 555–563 (2014)CrossRefGoogle Scholar
  65. 65.
    Saeedy, S., Givi, M.K.B.: Proc. Inst. Mech. Eng. Part B  J. Eng. Manuf. Investig. Eff. Crit. Process Parameters (2011)Google Scholar
  66. 66.
    Amancio-Filho, S.T., dos Santos, J.F.: Joining of polymers and polymer-metal hybrid structures: Recent developments and trends. Polym. Eng. Sci. 49(8), 1461–1476 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Debasish Mishra
    • 1
  • Santosh K. Sahu
    • 2
  • Raju P. Mahto
    • 3
  • Surjya K. Pal
    • 3
    Email author
  • Kamal Pal
    • 2
  1. 1.Advanced Technology Development CentreIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of Production EngineeringVeer Surendra Sai University of TechnologyBurlaIndia
  3. 3.Department of Mechanical EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations