Advertisement

Influence of Tool Plunge Depth During Friction Stir Spot Welding of AA5052-H32/HDPE/AA5052-H32 Sandwich Sheets

  • Pritam Kumar Rana
  • R. Ganesh NarayananEmail author
  • Satish V. Kailas
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)

Abstract

Metal/polymer/metal multi-layered materials have shown promising properties because of lightweight characteristics in automotive industries. Joining of these materials is difficult by conventional methods due to large difference in their physical and chemical properties. In the present work Friction Stir Spot Welding (FSSW) of AA5052-H32/HDPE/AA5052-H32 sandwich sheet is done. The objective is to analyse the influence of tool plunge depth on the joint behaviour. This is accomplished through joint characterization by evaluating mechanical performance, hook and flash formation, grain size, temperature measurement, and hardness distribution. Lap shear test, cross-tension test, peel test, and uni-axial tensile tests are conducted. A comparison between bimetallic and sandwich sheet has also been done. First, for joining sandwich sheets, the optimum plunge depth is 3.6 mm and greater. Adequate joint strength and extension at failure are obtained in this range. The joint strength does not depend on hook geometry, rather it depends on bond width and joint hardness. Second, though the joint strength of sandwich sheets is reduced as compared to bimetallic, the flash formed is minimised in sandwich sheets. The deformed material gets accommodated in the core layer region to reduce the flash formation. Finer grains are seen in sandwich sheet due to lesser peak temperature. Nugget pull out failure is commonly seen after testing and is independent of test method and the plunge depth.

Keywords

Sandwich sheets Spot welding Joint strength Hook Temperature Mechanical tests 

Notes

Acknowledgements

Authors thank CIF, IIT Guwahati for extending the universal testing machine facility for testing the joints. The authors also thank Department of Science and Technology, India for funding a FIST project (ETII-244/2008) by which the infrared camera was procured and used for temperature measurement. The present work is not funded by any funding organisation

References

  1. 1.
    Arici, A., Mert, S.: Friction stir spot welding of polypropylene. J. Reinf. Plast. Compos. 27, 2001–2004 (2008).  https://doi.org/10.1177/0731684408089134CrossRefGoogle Scholar
  2. 2.
    Badarinarayan, H., Shi, Y., Li, X., Okamoto, K.: Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets. Int. J. Mach. Tools Manuf. 49, 814–823 (2009).  https://doi.org/10.1016/j.ijmachtools.2009.06.001CrossRefGoogle Scholar
  3. 3.
    Barnes, T., Pashby, I.: Joining techniques for aluminium space frames used in automobiles. J. Mater. Process. Technol. 99, 62–71 (2000).  https://doi.org/10.1016/s0924-0136(99)00367-2CrossRefGoogle Scholar
  4. 4.
    Bilici, M.K., Yükler, A.I.: Influence of tool geometry and process parameters on macrostructure and static strength in friction stir spot welded polyethylene sheets. Mater. Des. 33, 145–152 (2012).  https://doi.org/10.1016/j.matdes.2011.06.059CrossRefGoogle Scholar
  5. 5.
    Bilici, M.K., Yükler, Aİ., Kurtulmuş, M.: The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets. Mater. Des. 32, 4074–4079 (2011).  https://doi.org/10.1016/j.matdes.2011.03.014CrossRefGoogle Scholar
  6. 6.
    Burchitz, I., Boesenkool, R., van der Zwaag, S., Tassoul, M.: Highlights of designing with Hylite—a new material concept. Mater. Des. 26, 271–279 (2005).  https://doi.org/10.1016/j.matdes.2004.06.021CrossRefGoogle Scholar
  7. 7.
    Filho, S.T.A., dos Santos, J.F.: Joining of polymers and polymer-metal hybrid structures: recent developments and trends. Polym. Eng. Sci. 49, 1461–1476 (2009)CrossRefGoogle Scholar
  8. 8.
    Genna, S., Leone, C., Tagliaferri, V.: Characterization of laser beam transmission through a high density polyethylene (HDPE) plate. Opt. Laser Technol. 88, 61–67 (2017).  https://doi.org/10.1016/j.optlastec.2016.08.010CrossRefGoogle Scholar
  9. 9.
    Gerlich, A., Avramovic-Cingara, G., North, T.H.: Stir zone microstructure and strain rate during Al 7075-T6 friction stir spot welding. Metall. Mater. Trans. A 37, 2773–2786 (2006).  https://doi.org/10.1007/bf02586110CrossRefGoogle Scholar
  10. 10.
    Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties, p. 345. Cambridge University Press (1997)Google Scholar
  11. 11.
    Gower, H.L., Pieters, R.R.G.M., Richardson, I.M.: Pulsed laser welding of metal-polymer sandwich materials using pulse shaping. J. Laser Appl. 18, 35–41 (2006).  https://doi.org/10.2351/1.2080307CrossRefGoogle Scholar
  12. 12.
    Hao, M., Osman, K.A., Boomer, D.R., Newton, C.J.: Developments in characterization of resistance spot welding of aluminum. Weld. J. 75, 1–s–8–s (1996)Google Scholar
  13. 13.
    Huskins, E.L., Cao, B., Ramesh, K.T.: Strengthening mechanisms in an Al-Mg alloy. Mater. Sci. Eng. A 527, 1292–1298 (2010).  https://doi.org/10.1016/j.msea.2009.11.056CrossRefGoogle Scholar
  14. 14.
    Kesharwani, R.K., Panda, S.K., Pal, S.K.: Experimental investigations on formability of aluminum tailor friction stir welded blanks in deep drawing process. J. Mater. Eng. Perform. 24, 1038–1049 (2014).  https://doi.org/10.1007/s11665-014-1361-5CrossRefGoogle Scholar
  15. 15.
    Kim, K.J., Kim, D., Choi, S.H., Chung, K., Shin, K.S., Barlat, F., Oh, K.H., Youn, J.R.: Formability of AA5182/polypropylene/AA5182 sandwich sheets. J. Mater. Process. Technol. 139, 1–7 (2003).  https://doi.org/10.1016/s0924-0136(03)00173-0CrossRefGoogle Scholar
  16. 16.
    Lee, C.-Y., Choi, D.-H., Yeon, Y.-M., Jung, S.-B.: Dissimilar friction stir spot welding of low carbon steel and Al–Mg alloy by formation of IMCs. Sci. Technol. Weld. Join. 14, 216–220 (2009).  https://doi.org/10.1179/136217109x400439CrossRefGoogle Scholar
  17. 17.
    Mitlin, D., Radmilovic, V., Pan, T., Chen, J., Feng, Z., Santella, M.L.: Structure-properties relations in spot friction welded (also known as friction stir spot welded) 6111 aluminum. Mater. Sci. Eng. A 441, 79–96 (2006).  https://doi.org/10.1016/j.msea.2006.06.126CrossRefGoogle Scholar
  18. 18.
    Oladimeji, O.O., Taban, E., Kaluc, E.: Understanding the role of welding parameters and tool profile on the morphology and properties of expelled flash of spot welds. Mater. Des. 108, 518–528 (2016).  https://doi.org/10.1016/j.matdes.2016.07.013CrossRefGoogle Scholar
  19. 19.
    Oliveira, P.H.F., Amancio-Filho, S.T., Dos Santos, J.F., Hage, E.: Preliminary study on the feasibility of friction spot welding in PMMA. Mater. Lett. 64, 2098–2101 (2010).  https://doi.org/10.1016/j.matlet.2010.06.050CrossRefGoogle Scholar
  20. 20.
    Paidar, M., Sadeghi, F., Najafi, H., Khodabandeh, A.R.: Effect of pin and shoulder geometry on stir zone and mechanical properties of friction stir spot-welded aluminum alloy 2024-T3 sheets. J. Eng. Mater. Technol. Trans. ASME 137, 3–9 (2015).  https://doi.org/10.1115/1.4030197CrossRefGoogle Scholar
  21. 21.
    Pickin, C.G., Young, K., Tuersley, I.: Joining of lightweight sandwich sheets to aluminium using self-pierce riveting. Mater. Des. 28, 2361–2365 (2007).  https://doi.org/10.1016/j.matdes.2006.08.003CrossRefGoogle Scholar
  22. 22.
    Raikoty, H., Ahmed, I., Talia, G.E.: High speed friction stir welding: a computational and experimental study. Proc. ASME Summer Heat Transf. Conf. 3, 431–436 (2005).  https://doi.org/10.1115/ht2005-72833CrossRefGoogle Scholar
  23. 23.
    Rana, P.K., Narayanan, R.G., Kailas, S.V.: Influence of rotational speed on the friction stir spot welding of polymer core sandwich sheets. In: Proceedings of 6th International & 27th All India Manufacturing Technology, Design and Research Conference (AIMTDR-2016). pp. 926–930 (2016)Google Scholar
  24. 24.
    Rana, P.K., Narayanan, R.G., Kailas, S.V.: Effect of rotational speed on friction stir spot welding of AA5052-H32/HDPE/AA5052-H32 sandwich sheets. J. Mater. Process. Technol. 252, 511–523 (2018)CrossRefGoogle Scholar
  25. 25.
    Rao, H.M., Jordon, J.B., Barkey, M.E., Guo, Y.B., Su, X., Badarinarayan, H.: Influence of structural integrity on fatigue behavior of friction stir spot welded AZ31Mg alloy. Mater. Sci. Eng. A 564, 369–380 (2013).  https://doi.org/10.1016/j.msea.2012.11.076CrossRefGoogle Scholar
  26. 26.
    Rao, H.M., Rodriguez, R.I., Jordon, J.B., Barkey, M.E., Guo, Y.B., Badarinarayan, H., Yuan, W.: Friction stir spot welding of rare-earth containing ZEK100 magnesium alloy sheets. Mater. Des. 56, 750–754 (2014).  https://doi.org/10.1016/j.matdes.2013.12.034CrossRefGoogle Scholar
  27. 27.
    Rao, H.M., Yuan, W., Badarinarayan, H.: Effect of process parameters on mechanical properties of friction stir spot welded magnesium to aluminum alloys. Mater. Des. 66, 235–245 (2015).  https://doi.org/10.1016/j.matdes.2014.10.065CrossRefGoogle Scholar
  28. 28.
    Rao, M.D.: Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. J. Sound Vib. 262, 457–474 (2003).  https://doi.org/10.1016/s0022-460x(03)00106-8CrossRefGoogle Scholar
  29. 29.
    Salonitis, K., Drougas, D., Chryssolouris, G.: Finite element modeling of penetration laser welding of Sandwich materials. Phys. Procedia 5, 327–335 (2010).  https://doi.org/10.1016/j.phpro.2010.08.059CrossRefGoogle Scholar
  30. 30.
    Sato, Y.S., Park, S.H.C., Kokawa, H.: Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys. Metall. Mater. Trans. A 32, 3033–3042 (2001).  https://doi.org/10.1007/s11661-001-0178-7CrossRefGoogle Scholar
  31. 31.
    Solanki, K.N., Jordon, J.B., Whittington, W., Rao, H., Hubbard, C.R.: Structure-property relationships and residual stress quantification of a friction stir spot welded magnesium alloy. Scr. Mater. 66, 797–800 (2012).  https://doi.org/10.1016/j.scriptamat.2012.02.011CrossRefGoogle Scholar
  32. 32.
    Thomas, W., Nicholas, E.: Friction stir welding for the transportation industries. Mater. Des. 18, 269–273 (1997).  https://doi.org/10.1016/s0261-3069(97)00062-9CrossRefGoogle Scholar
  33. 33.
    Tutar, M., Aydin, H., Yuce, C., Yavuz, N., Bayram, A.: The optimisation of process parameters for friction stir spot-welded AA3003-H12 aluminium alloy using a Taguchi orthogonal array. Mater. Des. 63, 789–797 (2014).  https://doi.org/10.1016/j.matdes.2014.07.003CrossRefGoogle Scholar
  34. 34.
    Yin, Y.H., Sun, N., North, T.H., Hu, S.S.: Influence of tool design on mechanical properties of AZ31 friction stir spot welds. Sci. Technol. Weld. Join. 15, 81–86 (2010).  https://doi.org/10.1179/136217109x12489665059384CrossRefGoogle Scholar
  35. 35.
    Yusof, F., Miyashita, Y., Seo, N., Mutoh, Y., Moshwan, R.: Utilising friction spot joining for dissimilar joint between aluminium alloy (A5052) and polyethylene terephthalate. Sci. Technol. Weld. Join. 17, 544–549 (2012).  https://doi.org/10.1179/136217112x13408696326530CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pritam Kumar Rana
    • 1
  • R. Ganesh Narayanan
    • 1
    Email author
  • Satish V. Kailas
    • 2
  1. 1.Department of Mechanical EngineeringIIT GuwahatiGuwahatiIndia
  2. 2.Department of Mechanical EngineeringIISc BangaloreBengaluruIndia

Personalised recommendations