Microcone Arrays by Sucrose Solution Assisted Femtosecond Laser Irradiation

  • Guoqiang Li
Part of the Springer Theses book series (Springer Theses)


After billions of years of evolution, fishes have developed perfect underwater superoleophobic ability, which makes their bodies well protected from oil contamination in aqueous environments, exhibiting appealing properties such as self-cleaning and anti-fouling (Liu et al. in Adv Mater 21:669–669, 2009, [1, 2], Liu et al. in Prog Mater Sci 58:503–564, 2013, [1, 2]). It is reported that fish scales consist of superhydrophilic micropapillae covered with nanostructures, exhibiting superhydrophilic in air. Hence, water can be trapped in the hierarchical micro/nanostructure to form an oil repellent layer, leading to underwater superoleophobicity and ultralow oil-adhesion (Liu et al. in Adv Mater 21:669–669, 2009, [1, 2], Liu et al. in Prog Mater Sci 58:503–564, 2013, [1, 2]).


  1. 1.
    Liu M, Wang S, Wei Z, et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv Mater. 2009;21(6):665–9.CrossRefGoogle Scholar
  2. 2.
    Liu K, Tian Y, Jiang L. Bio-inspired superoleophobic and smart materials: design, fabrication, and application. Prog Mater Sci. 2013;58(4):503–64.CrossRefGoogle Scholar
  3. 3.
    Xue Z, Jiang L. Bioinspired underwater superoleophobic surfaces. Acta Polym Sin. 2012;10:1091–101.Google Scholar
  4. 4.
    Liu X, Gao J, Xue Z, et al. Bioinspired oil strider floating at the oil/water interface supported by huge superoleophobic force. ACS Nano. 2012;6(6):5614–20.CrossRefGoogle Scholar
  5. 5.
    Yang HD, Li XH, Li GQ, et al. Formation of colorized silicon by femtosecond laser pulses in different background gases. Appl Phys A: Mater Sci Process. 2011;104(2):749–53.CrossRefGoogle Scholar
  6. 6.
    Amoruso S, Bruzzese R, Wang X, et al. Femtosecond laser ablation of nickel in vacuum. J Phys D: Appl Phys. 2007;40(2):331.CrossRefGoogle Scholar
  7. 7.
    Ali N, Bashir S, Akram M, et al. Effect of dry and wet ambient environment on the pulsed laser ablation of titanium. Appl Surf Sci. 2013;270:49–57.CrossRefGoogle Scholar
  8. 8.
    Bian H, Yang Q, Liu H, et al. A facile preparation route for netlike microstructures on a stainless steel using an ethanol-mediated femtosecond laser irradiation. Mater Sci Eng: C. 2013;33(2):663–7.CrossRefGoogle Scholar
  9. 9.
    Barmina EV, Stratakis E, Fotakis K, et al. Generation of nanostructures on metals by laser ablation in liquids: new results. Quantum Electron. 2010;40(11):1012.CrossRefGoogle Scholar
  10. 10.
    Kumar B, Yadav D, Thareja RK. Growth dynamics of nanoparticles in laser produced plasma in liquid ambient. J Appl Phys. 2011;110(7):074903.CrossRefGoogle Scholar
  11. 11.
    Albu C, Dinescu A, Filipescu M, et al. Periodical structures induced by femtosecond laser on metals in air and liquid environments. Appl Surf Sci. 2013;278:347–51.CrossRefGoogle Scholar
  12. 12.
    Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. J Comput Phys. 1992;100(2):335–54.CrossRefGoogle Scholar
  13. 13.
    Tyson WR, Miller WA. Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf Sci. 1977;62(1):267–76.CrossRefGoogle Scholar
  14. 14.
    Tolman RC. The effect of droplet size on surface tension. J Chem Phys. 1949;17(3):333–7.CrossRefGoogle Scholar
  15. 15.
    Rotenberg Y, Boruvka L, Neumann AW. Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J Colloid Interface Sci. 1983;93(1):169–83.CrossRefGoogle Scholar
  16. 16.
    Kirkwood JG, Buff FP. The statistical mechanical theory of surface tension. J Chem Phys. 1949;17(3):338–43.CrossRefGoogle Scholar
  17. 17.
    Van Oss CJ, Good RJ, Chaudhury MK. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir. 1988;4(4):884–91.CrossRefGoogle Scholar
  18. 18.
    Jasper JJ. The surface tension of pure liquid compounds. J Phys Chem Ref Data. 1972;1(4):841–1010.CrossRefGoogle Scholar
  19. 19.
    Yong J, Chen F, Yang Q, et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion. J Phys Chem C. 2013;117(47):24907–12.CrossRefGoogle Scholar
  20. 20.
    Yong J, Yang Q, Chen F, et al. Reversible underwater lossless oil droplet transportation. Adv Mater Interfaces. 2015;2(2).Google Scholar
  21. 21.
    Yong J, Yang Q, Chen F, et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces. J Mater Chem A. 2014;2(15):5499–507.CrossRefGoogle Scholar
  22. 22.
    Huang JY, Lai YK, Pan F, et al. Multifunctional superamphiphobic TiO2 nanostructure surfaces with facile wettability and adhesion engineering. Small. 2014;10(23):4865–73.CrossRefGoogle Scholar
  23. 23.
    Li G, Lu Y, Wu P, et al. Fish scale inspired design of underwater superoleophobic microcone arrays by sucrose solution assisted femtosecond laser irradiation for multifunctional liquid manipulation [J]. J Mater Chem A. 2015;3(36):18675–18683.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Precision Instrument and MachineryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations