Skip to main content

In Silico Characterization of Plant Secondary Metabolites

Abstract

Plants are a rich source of chemical compounds which serve as food, colors, fragrances’, flavors, medicines, etc. Plant secondary metabolites are widely used in food technology, industry, and medicinal preparations and play a vital role in plant-environment interactions. These metabolites have unique characteristics which make them as important candidates for discovery of new drugs and “lead” molecules. So far the major lacuna in the area of plant metabolite research is the identification and characterization of the secondary metabolites and their biosynthetic mechanisms. With an upsurge in the demand for plant metabolites, the advanced “omics technologies” are most sought after for a faster research and better characterization of the natural products. With the advent of the advanced bioinformatics, genomics, and proteomics and the synergy between combinatorial chemistry and structure-based drug design, the process of characterizing secondary metabolites as lead molecules for drug design has been revolutionized. The scientific community is now witnessing a newer, faster, and sophisticated approach to drug discovery with the aid of in silico characterization methods. This chapter, thus, focuses on the general steps to be followed in the in silico characterization of plant secondary metabolites, starting from literature mining, virtual screening, structural characterization, ADMET screening, and structure-based drug designing.

Keywords

  • Secondary metabolites
  • Virtual screening
  • Combinatorial chemistry
  • In silico characterization
  • Ligand-based screening
  • Docking
  • Drug designing

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-0347-0_15
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-981-13-0347-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2
Fig. 15.3
Fig. 15.4
Fig. 15.5
Fig. 15.6
Fig. 15.7
Fig. 15.8
Fig. 15.9
Fig. 15.10

References

  • Agostini-Costa TS, Vieira RF, Bizzo HR, Silveira D, Gimenes MA (2012) Secondary metabolites. In: Dhanarasu DS (ed) Chromatography and its applications. In Tech, Brazil

    Google Scholar 

  • Chen CY (2011) TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico, 2011. PLoS One 6:e15939. https://doi.org/10.1371/journal.pone.0015939

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng F, Li W, Liu G, Tang Y (2013) In silico ADMET prediction: recent advances, current challenges and future trends. Curr Top Med Chem 13(11):1273–1289., 1568-0266/1873-4294. https://doi.org/10.2174/15680266113139990033

    CrossRef  PubMed  CAS  Google Scholar 

  • Dar AM, Mir S (2017) Molecular docking: approaches, types, applications and basic challenges. J Anal Bioanal Tech. 2017 8:2. https://doi.org/10.4172/2155-9872.1000356

    CrossRef  CAS  Google Scholar 

  • Feixiong C, Weihua L, Guixia L, Yun T (2013) In Silico ADMET prediction: recent advances, current challenges and future trends. Curr Top Med Chem 13:1273–1289

    CrossRef  CAS  Google Scholar 

  • Goossens A, Hakkinen ST, Laakso I, Seppanen-Laakso T, Biondi S, De Sutter V (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci U S A 100:8595–8600

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Haggarty SJ (2005) The principle of complementarity: chemical versus biological space. Curr Opin Chem Biol 9(3):296–303

    CrossRef  CAS  PubMed  Google Scholar 

  • Irwin JJ, Shoichet BK (2016) Docking screens for novel ligands conferring new biology. J Med Chem 59:4103–4120

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabera JN, Seman1 E, Mussa AR, He X (2014) Plant secondary metabolites: biosynthesis, classification, function and pharmacological classification, function and pharmacological properties. J Pharm Pharmacol 2(7):377–392

    Google Scholar 

  • Kar S, Roy K (2013) How far can virtual screening take us in drug discovery? Expert Opin Drug Discovery 8(3):245–261. https://doi.org/10.1517/17460441.2013.761204

    CrossRef  CAS  Google Scholar 

  • Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25:197–206

    CrossRef  CAS  PubMed  Google Scholar 

  • Kogan SB, Kaliya M, Froumin N (2006) Liquid phase isomerization of isoprenol into prenol in hydrogen environment. Appl Catal A Gen 297(2):231–236

    CrossRef  CAS  Google Scholar 

  • Kristensen TG, Nielsen J, Pedersen CNS (2013) Methods for similarity-based virtual screening. Comput Struct Biotechnol J 5:e201302009

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kruger DM, Evers A (2010) Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors. ChemMedChem 5:148–158

    CrossRef  CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64:4–17

    CrossRef  Google Scholar 

  • Morrissey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63:708–724

    PubMed  PubMed Central  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Osbourn AE, lanzotti V (2009) Plant-derived natural products- synthesis, function and application. Springer, LLC, New York

    Google Scholar 

  • Park ES, Moon WS, Song MJ, Kim MN, Chung KH, Yoon JS (2001) Antimicrobial activity of phenol and benzoic acid derivatives. Int Biodeterior Biodegrad 47(4):209–214

    CrossRef  CAS  Google Scholar 

  • Pascolutti M, Quinn RJ (2014) Natural products as lead structures: chemical transformations to create lead-like libraries

    CrossRef  CAS  PubMed  Google Scholar 

  • Poulton JE (1990) Cyanogenesis in plants. Plant Physiol 94(2):401–405

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Reymond J-L, Awale M (2012) Exploring chemical space for drug discovery using the chemical universe database. ACS Chem Neurosci 3(9):649–657

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruby T, Rana CS (2015) Plant secondary metabolites: a review. Int J Eng Res Gen Sci 3(5):661–670

    Google Scholar 

  • Samuelsson G, Bohlin L (2009) Drugs of natural origin, 6th edn. Apotekarsocieteten, Sweden

    Google Scholar 

  • Schmidt TJ, Khalid SA, Romanha AJ, Alves TM, Biavatti MW, Brun R, Da Costa FB, de Castro SL, Ferreira VF, de Lacerda MV (2012) The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases – part I. Curr Med Chem 19(14):2128–2175

    CrossRef  CAS  PubMed  Google Scholar 

  • Shoichet BK, McGovern SL, Wei B, Irwin JJ (2002) Lead discovery using molecular docking. Curr Opin Chem Biol 6:439–446

    CrossRef  CAS  PubMed  Google Scholar 

  • Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    CrossRef  CAS  PubMed  Google Scholar 

  • Sweetlove LJ, Fell DA, Fernie AR (2008) Getting to grips with the plant metabolic network. Biochem J 409:27–41

    CrossRef  CAS  PubMed  Google Scholar 

  • Tian S, Wang J, Li Y, Li D, Xu L, Hou T (2015) The application of in silico drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev 86:2–10

    CrossRef  CAS  PubMed  Google Scholar 

  • Wadood A, Ahmed N, Shah L, Ahmad A, Hassan H, Shams S (2013) In-silico drug design: an approach which revolutionarised the drug discovery process. OA Drug Des Deliv. 2013 Sep 01 1(1):3

    Google Scholar 

  • Weber T, Kim HU (2016) The secondary metabolite bioinformatics portal: computational tools to facilitate synthetic biology of secondary metabolite production. Synth Syst Biotechnol 1:69–79. https://doi.org/10.1016/j.synbio.2015.1012.100

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wink MT, Schmeller TB, Latz Bruning B (1998) Modes of action of allelochemical alkaloids: interaction with neuroreceptors, DNA and other molecular targets. J Chem Ecol 24(11):1881–1937

    CrossRef  CAS  Google Scholar 

  • Ziegler S, Pries V, Hedberg C, Waldmann H (2013) Target identification for small bioactive molecules: finding the needle in the haystack. Angew Chem Int Ed Eng 52:2744

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Sabitha Rani, A., Neelima, G., Mukhopadhyay, R., Jyothi, K.S.N., Sulakshana, G. (2018). In Silico Characterization of Plant Secondary Metabolites. In: Choudhary, D., Kumar, M., Prasad, R., Kumar, V. (eds) In Silico Approach for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-13-0347-0_15

Download citation