Skip to main content

Characterization of Groundwater Contaminant Sources by Utilizing MARS Based Surrogate Model Linked to Optimization Model

  • Conference paper
  • First Online:
  • 536 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 759))

Abstract

Unknown groundwater contaminant source characterization is the first necessary step in the contamination remediation process. Although the remediation of a contaminated aquifer needs precise information of contaminant sources, usually only sparse and limited data are available. Therefore, often the process of remediation of contaminated groundwater is difficult and inefficient. This study utilizes Multivariate Adaptive Regression Splines (MARS) algorithm to develop an efficient Surrogate Models based Optimization (SMO) for source characterizing. Genetic Algorithm (GA) is also applied as the optimization algorithm in this methodology. This study addresses groundwater source characterizations with respect to the contaminant locations, magnitudes, and time release in a heterogeneous multilayered contaminated aquifer site. In this study, it is specified that only limited concentration measurement values are available. Also, the contaminant concentration data were collected a long time after the start of first potential contaminant source(s) activities. The hydraulic conductivity values are available at limited locations. The performance evaluation solution results of the developed MARS based SMO for source characterizing in a heterogeneous aquifer site with limited concentration measurement, parameter values, and under hydraulic conductivity uncertainties are shown to be satisfactory in terms of source characterization accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gorelick, S.M., Evans, B., Remson, I.: Identifying sources of groundwater pollution—an optimization approach. Water Resour. Res. 19(3), 779–790 (1983)

    Article  Google Scholar 

  2. Mahar, P.S., Datta, B.: Optimal monitoring network and ground-water-pollution sources identification. J. Water Resour. Plan. Manag. 123(4), 199–207 (1997)

    Article  Google Scholar 

  3. Aral, M.M., Guan, J.B., Maslia, M.L.: Identification of contaminant source location and release history in aquifers. J. Hydrol. Eng. 6(3), 225–234 (2001)

    Article  Google Scholar 

  4. Singh, R.M., Datta, B., Jain, A.: Identification of unknown groundwater pollution sources using artificial neural networks. J. Water Resour. Plan. Manag.-Asce 130(6), 506–514 (2004)

    Article  Google Scholar 

  5. Prakash, O., Datta, B.: Optimal characterization of pollutant sources in contaminated aquifers by integrating sequential-monitoring-network design and source identification: methodology and an application in Australia. Hydrogeol. J. 23(6), 1089–1107 (2015)

    Article  Google Scholar 

  6. Jha, M., Datta, B.: Three-dimensional groundwater contamination source identification using adaptive simulated annealing. J. Hydrol. Eng. 18(3), 307–317 (2013)

    Article  Google Scholar 

  7. Gorissen, D., et al.: A surrogate modeling and adaptive sampling toolbox for computer based design. J. Mach. Learn. Res. 11, 2051–2055 (2010)

    Google Scholar 

  8. Gong, W., Duan, Q.: An adaptive surrogate modeling-based sampling strategy for parameter optimization and distribution estimation. Environ. Model Softw. 95, 16 (2017)

    Article  Google Scholar 

  9. Dokou, Z., Pinder, G.F.: Optimal search strategy for the definition of a DNAPL source. J. Hydrol. 376(3–4), 542–556 (2009)

    Article  Google Scholar 

  10. Harbaugh, A.W.: MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model-the Ground-Water Flow Process. U.S. Geological Survey Techniques and Methods 6–A16 (2005)

    Google Scholar 

  11. Zheng, C., Wang, P.P.: MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guide. 1999: US Army Corps of Engineers-Engineer Research and Development Center, Contract Report SERDP-99-1, p. 220 (1999)

    Google Scholar 

  12. Friedman, H.J.: Multivariate adaptive regression splines. Ann. Stat. 19, 67 (1991)

    Google Scholar 

  13. Salford Predictive Modeller 8 (2017)

    Google Scholar 

  14. Hazrati, Y.S., Datta, B.: Self-organizing map based surrogate models for contaminant source identification under parameter uncertainty. Int. J. GEOMATE 13(36), 8 (2017)

    Google Scholar 

  15. Freeze, R.A.: A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media. Water Resour. Res. 11, 17 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrbanoo Hazrati-Yadkoori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hazrati-Yadkoori, S., Datta, B. (2019). Characterization of Groundwater Contaminant Sources by Utilizing MARS Based Surrogate Model Linked to Optimization Model. In: Bhatia, S., Tiwari, S., Mishra, K., Trivedi, M. (eds) Advances in Computer Communication and Computational Sciences. Advances in Intelligent Systems and Computing, vol 759. Springer, Singapore. https://doi.org/10.1007/978-981-13-0341-8_14

Download citation

Publish with us

Policies and ethics