Skip to main content

Rhizobium-Legume Symbioses: Heavy Metal Effects and Principal Approaches for Bioremediation of Contaminated Soil

Abstract

Leguminous plants play a vital role in agriculture, economy, and even food security for the world’s population. Indeed, they are considered as a major source of protein for human food worldwide, providing 22% protein, 32% fat, and 7% carbohydrates. They provide a bulk of soil organic matter (SOM) in agricultural soils and have a crucial role in the soil for long-term sustainability. This is due to their significant role in improving soil fertility and ability to form Rhizobium-legume symbiosis enabling atmospheric nitrogen (N) fixation. Recently, Rhizobium-legume symbioses have attracted attention for their biochemical and ecological capacity to degrade and remove organic pollutants. They are also known for their resistance to heavy metal which make them efficient tools for rehabilitating contaminated soils. However, high heavy metal concentrations in soil may have an adverse effect on both Rhizobium and its host plant and also on their symbiotic properties. In fact, the repartition of heavy metals in soil is widespread, with an annual global heavy metal release estimated at 22.10−3 Tg of Cd, 939.10−3 Tg of Cu, 783.10−3 Tg of Pb, and 1.35 Tg of Zn. Moreover, consumption of agri-foods grown in heavy metal-polluted soils may have serious implications on human health. Recent data indicate that exposure to low levels of some heavy metals such as cadmium can have adverse health effects, mainly in the form of kidney damage, but also bone and fracture effects.

In this chapter, the harmful effects of heavy metals on the environment and humans are described along with their natural and anthropogenic origins. The disturbances induced by HM to host plants and to symbiotic N-fixing (SNF) bacteria are explained. The importance of phytoremediation as an alternative method of pollutant cleanup is highlighted. Then its main categories are elaborated along with the role of some legumes in phytoextraction and phytostabilization. Then, several approaches and strategies are aimed at improving the bioaccumulation potential and bioremediation of heavy metals based on the use of Rhizobium-legume symbiosis. These methods have been objectively discussed. The co-inoculation of plants with rhizobia and plant growth-promoting rhizobacteria (PGPRs) resistant to heavy metals presents important advantages for promoting the plant growth besides reinforcing the bacterial potency for heavy metal intake.

Furthermore, the use of bacterial genetic/molecular engineering approaches, particularly for the symbiotic association Rhizobium-legume, has proved to be an interesting and significant alternative. It offers a greater degradation capacity of various metal contaminants to promote contaminated soil remediation.

Keywords

  • Rhizobium
  • Legume
  • Symbiosis
  • Contamination
  • Heavy metals
  • Phytoremediation
  • Soil fertility

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACC deaminase:

1-Aminocyclopropane-1-carboxylate deaminase

BCF:

Bioconcentration factor

CDF:

Cation diffusion facilitator

EDTA:

Ethylenediaminetetraacetic acid

EPS:

Exopolysaccharide

HM:

Heavy metal

HME-RND:

Heavy metal efflux-resistance nodulation and cell division

IAA:

Indole-3-acetic acid

MFP:

Membrane fusion protein

MFS:

Major facilitator superfamily

MTEs:

Metal trace elements

OMF:

Outer membrane factors

PGPR:

Plant growth-promoting rhizobacteria

RND:

Resistance nodulation and cell division

ROS:

Reactive oxygen species

TF:

Translocation factor

Tg:

Teragrams

References

  • Abd Alla M, Issa A, Ohyama T (2014) Impact of harsh environmental conditions on nodule formation and dinitrogen fixation of legumes. Adv Biol Ecol Nitrogen Fixat ISBN: 978–953

    Google Scholar 

  • Abhilash PC, Powell JR, Singh HB, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30:416–420

    CrossRef  PubMed  CAS  Google Scholar 

  • Abou-Shanab RAI, van Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–367

    CrossRef  PubMed  CAS  Google Scholar 

  • Ahemad M (2015) Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech 5:111–121

    CrossRef  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ - Sci 26:1–20

    CrossRef  Google Scholar 

  • Ahmad E, Zaidi A, Khan M, Oves M (2012) Heavy metal toxicity to symbiotic nitrogen-fixing microorganism and host legumes. Toxic heavy Met to Legum bioremediation 29–44

    Google Scholar 

  • Ahmadpour P, Ahmadpour F, Mahmud TM, Abdu A, Soleimani M, Tayefeh FH (2012) Phytoremediation of heavy metals: a green technology. Afr J Biotechnol 11:14036–14043

    CAS  Google Scholar 

  • Aiking H, Kok K, Heerikhuizen HV, Van’t Riet T (1982) Adaptation to cadmium by Klebsiella aerogenes growing in continuous culture proceeds mainly via formation of cadmium sulfide. Appl Environ Microbiol 44:938–944

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ali Q, Ahsan M, Khaliq I, Elahi M, Ali S, Ali F, Naees M (2011) Role of Rhizobacteria in phytoremediation of heavy metals: an overview. Int Res J Plant Sci 2:220–232

    Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    CrossRef  PubMed  CAS  Google Scholar 

  • Angelovičová L, Fazekašová D (2014) Contamination of the soil and water environment by heavy metals in the former mining area of Rudňany (Slovakia). Soil Water Res 9.(2014:1

    CrossRef  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    CrossRef  PubMed  CAS  Google Scholar 

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    CrossRef  Google Scholar 

  • Ashraf M, Maah M, Yusoff I (2012) Assessment of phytoextraction efficiency of naturally grown plant species at the former tin mining catchment. Fresenius Environ Bull 21:523–533

    CAS  Google Scholar 

  • Azad MAK, Amin L, Sidik NM (2014) Genetically engineered organisms for bioremediation of pollutants in contaminated sites. Chin Sci Bull 59:703–714

    CrossRef  CAS  Google Scholar 

  • Babu A, Shea P, Sudhakar D, Jung I, Oh B (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal (loid)-contaminated mining site soil. J Environ Manag 151:160–166

    CrossRef  CAS  Google Scholar 

  • Balestrasse K, Gardey L, Gallego S, Tomaro M (2001) Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stress. Funct Plant 28:497–504

    CrossRef  CAS  Google Scholar 

  • Bianucci E, Fabra A, Castro S (2012) Involvement of glutathione and enzymatic defense system against cadmium toxicity in Bradyrhizobium sp. strains (peanut symbionts). Biometals 25:23–32

    CrossRef  PubMed  CAS  Google Scholar 

  • Blasi B, Peca L, Vass I, Kos P (2012) Characterization of stress responses of heavy metal and metalloid inducible promoters in Synechocystis PCC6803. J Microbiol Biotechnol 22:166–169

    CrossRef  PubMed  CAS  Google Scholar 

  • Blindauer C, Harrison M, Robinson A, Parkinson JA, Bowness PW, Sadler PJ, Robinson NJ (2002) Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol Microbiol 45:1421–1432

    CrossRef  PubMed  CAS  Google Scholar 

  • Botsford J (1999) A simple method for determining the toxicity of chemicals using a bacterial indicator organism. Environ Toxicol 14:285–289

    CrossRef  CAS  Google Scholar 

  • Buragohain S, Sharma B, Nath JD, Gogaoi N, Meena RS, Lal R (2017) Impact of ten years of bio-fertilizer use on soil quality and rice yield on an inceptisol in Assam, India. Soil Res. https://doi.org/10.1071/SR17001

  • Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, López R, Chamber MA, Palomares AJ (2005) Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcóllar pyrite mine. Soil Biol Biochem 37:1131–1140

    CrossRef  CAS  Google Scholar 

  • Chaintreuil C, Rigault F, Moulin L, Jaffré T, Fardoux J, Giraud E, Dreyfus B, Bailly X (2007) Nickel resistance determinants in Bradyrhizobium strains from nodules of the endemic New Caledonia legume Serianthes calycina. Appl Environ Microbiol 73:8018–8022

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Dadhich RK, Meena RS, Reager ML, Kansotia BC (2015) Response of bio-regulators to yield and quality of Indian mustard (Brassica juncea L. Czernj. and Cosson) under different irrigation environments. J Appl Nat Sci 7(1):52–57

    CrossRef  CAS  Google Scholar 

  • Dal Corso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5:1117–1132

    CrossRef  CAS  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    CrossRef  PubMed  CAS  Google Scholar 

  • Datta R, Baraniya D, Wang YF, Kelkar A, Moulick A, Meena RS, Yadav GS, Ceccherini MT, Formanek P (2017) Multi-function role as nutrient and scavenger off reeradical in soil. Sustain MDPI 9:402. https://doi.org/10.3390/su9081402

    CrossRef  Google Scholar 

  • Delgadillo J, Lafuente A, Doukkali B, Redondo-Gómez S, Mateos-Naranjo E, Caviedes MA, Pajuelo E, Rodríguez-Llorente ID (2015) Improving legume nodulation and Cu rhizostabilization using a genetically modified rhizobia. Environ Technol 36:1237–1245

    CrossRef  PubMed  CAS  Google Scholar 

  • Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Legume Res 39(4):590–594

    Google Scholar 

  • Drewniak L, Matlakowska R, Sklodowska A (2008) Arsenite and arsenate metabolism of Sinorhizobium sp. M14 living in the extreme environment of the Zloty Stok gold mine. Geomicrobiol J 25:363–370

    CrossRef  CAS  Google Scholar 

  • Duan J, Müller K, Charles T, Vesely S, Glick B (2009) 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microb Ecol 57:423–436

    CrossRef  PubMed  CAS  Google Scholar 

  • El Aafi N, Saidi N, Maltouf A, Perez-Palacios P, Dary M, Brhada F, Pajuelo E (2015) Prospecting metal-tolerant rhizobia for phytoremediation of mining soils from Morocco using Anthyllis vulneraria L. Environ Sci Pollut Res 22:4500–4512

    CrossRef  CAS  Google Scholar 

  • EL Hilali I (2006) La Symbiose Rhizobium–Lupin: Biodiversité des Microsymbiotes et Mise en Evidence d’une Multi-Infection Nodulaire chez Lupinus Luteus. Dissertation, Rabat University Mohammed V

    Google Scholar 

  • Ensley B (2000) Rational for use of phytoremediation. Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 3–12

    Google Scholar 

  • Ezezika OC, Singer PA (2010) Genetically engineered oil-eating microbes for bioremediation: prospectus and regulatory challenges. Technol Soc 32:331–335

    CrossRef  Google Scholar 

  • Ez-Zarhouny D, Hbaiz EM, Lebkiri M, Elanza S, Lebkiri A, Rifi EH, Habbadi N (2015) Evaluation of the accumulation of some heavy metals in the red beetroot (Beta vulgaris L.) grown on two different soils and irrigated by wastewater from the SETP Bouznika (Morocco). Int J Sci Eng Res 6:7p

    Google Scholar 

  • Fan LM, Ma ZQ, Liang JQ, Li HF, Wang ET, Wei GH (2011) Characterization of a copper-resistant symbiotic bacterium isolated from Medicago lupulina growing in mine tailings. Bioresour Technol 102:703–709

    CrossRef  PubMed  CAS  Google Scholar 

  • Fantke P, Friedrich R, Jolliet O (2012) Health impact and damage cost assessment of pesticides in Europe. Environ Int 49:9–17

    CrossRef  PubMed  CAS  Google Scholar 

  • Fatnassi I, Chiboub M, Saadani O, Jebara M, Jebara S (2015) Phytostabilization of moderate copper contaminated soils using co-inoculation of Vicia faba with plant growth promoting bacteria. J Basic Microbiol 55:303–311

    CrossRef  PubMed  CAS  Google Scholar 

  • Figueira E, Gusmão Lima A, Pereira S (2005) Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. Can J Microbiol 51:7–14

    CrossRef  PubMed  CAS  Google Scholar 

  • Gamalero E, Glick B (2012) Plant growth-promoting bacteria and metals phytoremediation. Phytotechnol Remediat Environ Contam 361

    Google Scholar 

  • Ghnaya T, Mnassri M, Ghabriche R, Wali M (2015) Nodulation by Sinorhizobium meliloti originated from a mining soil alleviates Cd toxicity and increases Cd-phytoextraction in Medicago sativa L. Front Plant Sci 6:863

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    CrossRef  PubMed  CAS  Google Scholar 

  • Gómez-Sagasti M, Marino D (2015) PGPRs and nitrogen-fixing legumes: a perfect team for efficient Cd phytoremediation? Front Plant Sci 6:81

    PubMed  PubMed Central  Google Scholar 

  • González-Guerrero M, Argüello J (2008) Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proc Natl Acad Sci 105:5992–5997

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney R, Gowda C, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5:355–377

    CrossRef  PubMed  Google Scholar 

  • Grass G, Fan B, Rosen B, Lemke K, Schlegel H, Rensing C (2001) Nre B from achromobacter xylosoxidans 31A is a nickel-induced transporter conferring nickel resistance. J Bacteriol 183:2803–2807

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Grison C, Jackson S, Merlot S, Dobson A, Grison C (2015) Rhizobium metallidurans sp. nov., a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator. Int J Syst Evol Microbiol 65:1525–1530

    CrossRef  PubMed  CAS  Google Scholar 

  • Guo J, Chi J (2014) Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil 375:205–214

    CrossRef  CAS  Google Scholar 

  • Gupta R, Kumar T, Mittal A (2016) Isolation, identification and characterization of heavy metal resistant bacteria from soil of an iron industry, Haryana (India). Int J Pharm Sci Res 7:1308

    CAS  Google Scholar 

  • Hadi F, Bano A (2010) Effect of diazotrophs (Rhizobium and Azatebactor) on growth of maize (Zea mays L.) and accumulation of lead (Pb) in different plant parts. Pak J Bot 42:4363–4370

    Google Scholar 

  • Hao X, Lin Y, Johnstone L, Baltrus D, Miller S, Wei G, Rensing C (2012) Draft genome sequence of plant growth-promoting rhizobium Mesorhizobium amorphae, isolated from zinc-lead mine tailings. J Bacteriol 194:736–737

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Hao X, Taghavi S, Xie P, Orbach MJ, Alwathnani HA, Rensing C, Wei G (2014) Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. Int J Phytoremediation 16:179–202

    CrossRef  PubMed  CAS  Google Scholar 

  • He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hengstler J, Bolm-Audorff U, Faldum A, Janssen K, Reifenrath M, Götte W et al (2003) Occupational exposure to heavy metals: DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected. Carcinogenesis 24:63–73

    CrossRef  PubMed  CAS  Google Scholar 

  • Hider R, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    CrossRef  PubMed  CAS  Google Scholar 

  • Huynh TMD (2009) Impact of heavy metals on plant / worm / soil microflora interaction “Impact des métaux lourds sur les interactions plante/ver de terre/microflore tellurique” (Doctoral dissertation, Université Paris-Est).

    Google Scholar 

  • Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66:1670–1676

    CrossRef  PubMed  CAS  Google Scholar 

  • Itoh H, Iwasaki M, Sawada N, Takachi R, Kasuga Y, Yokoyama S, Onuma H, Nishimura H, Kusama R, Yokoyama K, Tsugane S (2014) Dietary cadmium intake and breast cancer risk in Japanese women: a case–control study. Int J Hyg Environ Health 217:70–77

    CrossRef  PubMed  CAS  Google Scholar 

  • Jebara S, Saadani O, Fatnassi I, Chiboub M, Abdelkrim S, Jebara M (2015) Inoculation of Lens culinaris with Pb-resistant bacteria shows potential for phytostabilization. Environ Sci Pollut Res 22:2537–2545

    CrossRef  CAS  Google Scholar 

  • Johnson M, Cooke J, Stevenson J (1994) Revegetation of metalliferous wastes and land after metal mining. Min Environ Impact R Soc Chem Camb:31–48

    Google Scholar 

  • Joutey N, Bahafid W, Sayel H, Ghachtouli NE (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. Biodegrad Sci 72:289–320

    Google Scholar 

  • Kalloniati C, Krompas P, Karalias G, Udvardi M, Rennenberg H, Herschbach C, Flemetakis E (2015) Nitrogen-fixing nodules are an important source of reduced sulfur, which triggers global changes in sulfur metabolism in Lotus japonicus. Plant Cell 27:2384–2400

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Karthik C, Oves M, Sathya K, Sri Ramkumar V, Arulselvi P (2016) Isolation and characterization of multi-potential Rhizobium strain ND2 and its plant growth-promoting activities under Cr (VI) stress. Arch Agron Soil Sci:1–12

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    CrossRef  PubMed  CAS  Google Scholar 

  • Khan M, Zaidi A, Wani P, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    CrossRef  CAS  Google Scholar 

  • Kinkema M, Scott P, Gresshoff P (2006) Legume nodulation: successful symbiosis through short-and long-distance signalling. Funct Plant Biol 33:707–721

    CrossRef  CAS  PubMed  Google Scholar 

  • Kong Z, Mohamad O, Deng Z, Liu X, Glick B, Wei G (2015) Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress. Environ Sci Pollut Res 22:12479–12489

    CrossRef  CAS  Google Scholar 

  • Kong Z, Deng Z, Glick B, Wei G, Chou M (2017) A nodule endophytic plant growth-promoting Pseudomonas and its effects on growth, nodulation and metal uptake in Medicago lupulina under copper stress. Ann Microbiol 67:49–58

    CrossRef  CAS  Google Scholar 

  • Kozdrój J, Piotrowska-Seget Z, Krupa P (2007) Mycorrhizal fungi and ectomycorrhiza associated bacteria isolated from an industrial desert soil protect pine seedlings against Cd (II) impact. Ecotoxicology 16:449–456

    CrossRef  PubMed  CAS  Google Scholar 

  • Kuiper I, Bloemberg G, Lugtenberg B (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant-Microbe Interact 14:1197–1205

    CrossRef  PubMed  CAS  Google Scholar 

  • Kumar S, Sheoran S, Kumar SK, Kumar P, Meena RS (2016) Drought: a challenge for Indian farmers in context to climate change and variability. Progress Res Int J 11:6243–6246

    Google Scholar 

  • Kumar S, Meena RS, Yadav GS, Pandey A (2017) Response of sesame (Sesamum indicum L.) to sulphur and lime application under soil acidity. Int J Plant Soil Sci 14(4):1–9

    CrossRef  Google Scholar 

  • Ladislas S, El-Mufleh A, Gérente C, Chazarenc F, Andrès Y, Béchet B (2012) Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water Air Soil 223:877–888

    CrossRef  CAS  Google Scholar 

  • Lal R (2009) Agricultural sciences-volume 1. Encyclopedia of life support system, p 460

    Google Scholar 

  • Larimer A, Bever J, Clay K (2012) Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos 121:2090–2096

    CrossRef  Google Scholar 

  • Lebrazi S, Fikri-Benbrahim K (2014) Environmental stress conditions affecting the N2 fixing Rhizobium-legume symbiosis and adaptation mechanisms. Afr J Microbiol Res 8:4053–4061

    Google Scholar 

  • Li X, Peng R, Fan H, Xiong A, Yao Q, Cheng Z, Li Y (2005) Vitreoscilla hemoglobin overexpression increases submergence tolerance in cabbage. Plant Cell Rep 23:710–715

    CrossRef  PubMed  CAS  Google Scholar 

  • Li Z, Ma Z, Hao X, Wei G (2012) Draft genome sequence of Sinorhizobium meliloti CCNWSX0020, a nitrogen-fixing symbiont with copper tolerance capability isolated from lead-zinc mine tailings. J Bacteriol 194:1267–1268

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Z, Ma Z, Hao X, Rensing C, Wei G (2014) Genes conferring copper resistance in Sinorhizobium meliloti CCNWSX0020 also promote the growth of Medicago lupulina in copper-contaminated soil. Appl Environ Microbiol 80:1961–1971

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Song Q, Tang Y, Li W, Xu J, Wu J, Wang F, Brookes PC (2013) Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Sci Total Environ 463:530–540

    CrossRef  PubMed  CAS  Google Scholar 

  • Lodewyckx C (2001) A potential role for bacterial endophytes in phytoremediation of heavy metal contaminated soils. PhD thesis, Limbg Univ (LUC), Belgium, 157pp

    Google Scholar 

  • López M, Peralta-Videa J, Benitez T, Gardea-Torresdey J (2005) Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter. Chemosphere 61:595–598

    CrossRef  PubMed  CAS  Google Scholar 

  • Lu M, Li Z, Liang J, Wei Y, Rensing C, Wei G (2016) Zinc Resistance Mechanisms of P 1B -type ATPases in Sinorhizobium meliloti CCNWSX0020. Sci Rep 6:12

    CrossRef  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2013) Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere 93:1386–1392

    CrossRef  PubMed  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25

    CrossRef  CAS  Google Scholar 

  • Macaskie LE, Bonthrone KM, Yong P, Goddard D (2000) Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146:1855–1867

    CrossRef  PubMed  CAS  Google Scholar 

  • Machehouri A, Ben Messaoud B, Nassiri L, Ibijbijen J (2017) Numeration of natural rhizobial populations from chickpea (Cicer arietinum) in different moroccan soils. “Dénombrement des populations naturelles de rhizobium du Pois chiche (Cicer arietinum) dans différents sols du Maroc”. Eur Sci J 13(6):273–286

    Google Scholar 

  • Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P (2016) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res:1–21

    Google Scholar 

  • Malekzadeh E, Alikhani H, Savaghebi-Firoozabadi G, Zarei M (2012) Bioremediation of cadmium-contaminated soil through cultivation of maize inoculated with plant growth–promoting rhizobacteria. Biorem J 16:204–211

    CrossRef  CAS  Google Scholar 

  • Malusa E, Vassilev N (2014) A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotechnol 98(15):6599–6607

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Mandal S, Bhattacharyya R (2012) Rhizobium–legume symbiosis: a model system for the recovery of metal-contaminated agricultural land. In: Toxicity heavy met to legume bioremediation, pp 115–127

    CrossRef  Google Scholar 

  • Mandal S, Pati B, Das A, Ghosh A (2008) Characterization of a symbiotically effective rhizobium resistant to arsenic: isolated from the root nodules of Vigna mungo (L.) Hepper grown in an arsenic-contaminated field. J Gen Appl Microbiol 54:93–99

    CrossRef  PubMed  CAS  Google Scholar 

  • Maynaud G, Brunel B, Yashiro E, Mergeay M, Cleyet-Marel J, Le Quéré A (2014) CadA of Mesorhizobium metallidurans isolated from a zinc-rich mining soil is a P IB-2-type ATPase involved in cadmium and zinc resistance. Res Microbiol 165:175–189

    CrossRef  PubMed  CAS  Google Scholar 

  • Meena H, Meena RS (2017) Assessment of sowing environments and bio-regulators as adaptation choice for clusterbean productivity in response to current climatic scenario. Bangladesh J Bot 46(1):241–244

    Google Scholar 

  • Meena VS, Maurya BR, Meena RS, Meena SK, Singh NP, Malik VK (2014) Microbial dynamics as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi, India. Afr J Microb Res 8(1):257–263

    Google Scholar 

  • Meena RS, Yadav RS, Meena H, Kumar S, Meena YK, Singh A (2015a) Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. J Clean Prod 104:513–515

    CrossRef  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    CrossRef  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015c) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    CrossRef  Google Scholar 

  • Meena RS, Dhakal Y, Bohra JS, Singh SP, Singh MK, Sanodiya P (2015d) Influence of bioinorganic combinations on yield, quality and economics of mungbean. Am J Exp Agri 8(3):159–166

    CAS  Google Scholar 

  • Meena HR, Meena RS, Lal R, Singh GS, Mitran T, Layek J, Patil SB, Kumar S, Verma T (2017a) Response of sowing dates and bio regulators on yield of clusterbean under current climate in alley cropping system in eastern U.P., Indian Leg Res, Accepted in press

    Google Scholar 

  • Meena RS, Gogaoi N, Kumar S (2017b) Alarming issues on agricultural crop production and environmental stresses. J Clean Prod 142:3357–3359

    CrossRef  Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2017c) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Reg, Accepted in press

    CrossRef  CAS  Google Scholar 

  • Meena RS, Meena PD, Yadav GS, Yadav SS (2017d) Phosphate solubilizing microorganisms, principles and application of microphos technology. J Clean Prod 145:157–158

    CrossRef  Google Scholar 

  • Mench M, Manceau A, Vangronsveld J, Clijsters H, Mocquot B (2000) Capacity of soil amendments in lowering the phytoavailability of sludge-borne zinc. Agronomie 20:383–397

    CrossRef  Google Scholar 

  • Moreira H, Pereira SI, Marques APGC, Rangel AO, Castro PM (2016) Selection of metal resistant plant growth promoting rhizobacteria for the growth and metal accumulation of energy maize in a mine soil—effect of the inoculum size. Geoderma 278:1–11

    CrossRef  CAS  Google Scholar 

  • Nies D (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    CrossRef  PubMed  CAS  Google Scholar 

  • Nouairi I, Mrabet M, Rabhi M, Mhadhbi H, Zribi K (2015) Cu-tolerant Sinorhizobium meliloti strain is beneficial for growth, Cu accumulation, and mineral uptake of alfalfa plants grown in Cu excess. Arch Agron Soil Sci 61:1707–1718

    CrossRef  CAS  Google Scholar 

  • Ögütçü H, Algur Ö, Elkoca E, Kantar F (2008) The determination of symbiotic effectiveness of Rhizobium strains isolated from wild chickpeas collected from high altitudes in Erzurum. Turkish J Agric For 7:241–248

    Google Scholar 

  • Ögütçü H, Adiguzel A, Gulluce M, Karadayi M, Sahin F (2009) Molecular characterization of Rhizobium strains isolated from wild Chickpeas collected from high altitudes in Erzurum-Turkey. Rom Biotechnol Lett 14:4294–4300

    Google Scholar 

  • Oves M, Khan M, Zaidi A, Ahmad E (2012) Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview. Springer, Vienna

    CrossRef  Google Scholar 

  • Padmavathiamma P, Li L (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    CrossRef  CAS  Google Scholar 

  • Pajuelo E, Rodríguez-Llorente ID, Dary M, Palomares AJ (2008) Toxic effects of arsenic on Sinorhizobium–Medicago sativa symbiotic interaction. Environ Pollut 154:203–211

    CrossRef  PubMed  CAS  Google Scholar 

  • Pajuelo E, Pérez-Palacios P, Romero-Aguilar A, Delgadillo, J., Doukkali, B., Rodríguez-Llorente I, Caviedes M (2016) Improving legume–rhizobium symbiosis for copper phytostabilization through genetic manipulation of both symbionts. Biol Nitrogen Fixat Benef Plant-Microbe Interact:183–193

    Google Scholar 

  • Panhwar Q, Jusop S, Naher U, Othman R, Razi M (2013) Application of potential phosphate-solubilizing bacteria and organic acids on phosphate solubilization from phosphate rock in aerobic rice. Sci World J 2013:10

    CrossRef  CAS  Google Scholar 

  • Park R, Bena J, Stayner L, Smith RJ, Gibb H, Lees P (2004) Hexavalent chromium and lung cancer in the chromate industry: a quantitative risk assessment. Risk Anal 24:1099–1108

    CrossRef  PubMed  Google Scholar 

  • Pastor J, Hernández AJ, Prieto N, Fernández-Pascual M (2003) Accumulating behaviour of Lupinus albus L. growing in a normal and a decalcified calcic luvisol polluted with Zn. J Plant Physiol 160:1457–1465

    CrossRef  PubMed  CAS  Google Scholar 

  • Paulsen I, Saier Jr M undefined (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103

    CrossRef  PubMed  CAS  Google Scholar 

  • Pazurkiewicz-Kocot K, Galas W, Kita A (2003) The effect of selenium on the accumulation of some metals in Zea mays L. plants treated with indole-3-acetic acid. Cell Mol Biol Lett 8:97–103

    PubMed  CAS  Google Scholar 

  • Pereira S, Castro P (2014) Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils. Environ Sci Pollut Res 21:14110–14123

    CrossRef  CAS  Google Scholar 

  • Pereira SIA, AIG L, EMDAP F (2006) Heavy metal toxicity in Rhizobium leguminosarum biovar viciae isolated from soils subjected to different sources of heavy-metal contamination: effects on protein expression. Appl Soil Ecol 33:286–293

    CrossRef  Google Scholar 

  • Petruzzelli G, Pezzarossa B (2003) Ionic strength influence on heavy metal sorption processes by soil. J Phys IV 107:1061–1064

    CAS  Google Scholar 

  • Petruzzelli G, Pedron F, Rosellini I, Barbafieri M (2015) The bioavailability processes as a key to evaluate phytoremediation efficiency. In: Phytoremediation. Springer, Cham, pp 31–43

    Google Scholar 

  • Qureshi AS, Hussain MI, Ismail S, Khan QM (2016) Evaluating heavy metal accumulation and potential health risks in vegetables irrigated with treated wastewater. Chemosphere 163:54–61

    CrossRef  PubMed  CAS  Google Scholar 

  • Ramírez M, Íñiguez L, Guerrero G, Sparvoli F, Hernández G (2016) Rhizobium etli bacteroids engineered for Vitreoscilla hemoglobin expression alleviate oxidative stress in common bean nodules that reprogramme global gene expression. Plant Biotechnol Rep 10:463–474

    CrossRef  Google Scholar 

  • Rangel W, Thijs S, Janssen J, Oliveira Longatti S, Bonaldi D, Ribeiro P, Jambo I, Eevers N, Weyens N, Vangronsveld J, Moreira F (2016) Native rhizobia from Zn-mining soil promotes the growth of Leucaena leucocephala on contaminated soil. Int J Phytoremediation 19:142–156

    CrossRef  CAS  Google Scholar 

  • Reichman SM (2007) The potential use of the legume–rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol Biochem 39:2587–2593

    CrossRef  CAS  Google Scholar 

  • Rittmann BE, Hausner M, Loffler F et al (2006) A vista for microbial ecology and environmental biotechnology. Environ Sci Technol 40:1096–1103

    CrossRef  PubMed  Google Scholar 

  • Roane T, Josephson K, Pepper I (2001) Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. Appl Environ Microbiol 67:3208–3215

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson B, Leblanc M, Petit D, Brooks R, Kirkman J, Gregg P (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56

    CrossRef  CAS  Google Scholar 

  • Scherer J, Nies D (2009) CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol Microbiol 73:601–621

    CrossRef  PubMed  CAS  Google Scholar 

  • Schurig-Briccio L, Gennis R (2012) Characterization of the PIB-Type ATPases present in Thermus thermophilus. J Bacteriol 194:4107–4113

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Sepehri M, Rastin NS, Rahmani HAAH (2006) Effects of soil pollution by cadmium on nodulation and nitrogen fixation ability of native strains of Sinorhizobium meliloti. JWSS-Isfahan Univ Technol 10:153–163

    CAS  Google Scholar 

  • Sethy SK, Ghosh S (2013) Effect of heavy metals on germination of seeds. J Nat Sci Biol Med 4(2):272–275

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    CrossRef  PubMed  CAS  Google Scholar 

  • Singh A, Prasad SM (2015) Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int J Environ Sci Technol 12(1):353–366

    CrossRef  CAS  Google Scholar 

  • Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Mini-review phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61:405–412

    CrossRef  PubMed  CAS  Google Scholar 

  • Singh JS, Abhilash PC, Singh HB et al (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9

    CrossRef  PubMed  CAS  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad S (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    PubMed  PubMed Central  Google Scholar 

  • Stark B, Pagilla K, Dikshit K (2015) Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation. Appl Microbiol Biotechnol 99:1627–1636

    CrossRef  PubMed  CAS  Google Scholar 

  • Sun Y, Zhou Q, Xie X, Liu R (2010) Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J Hazard Mater 174:455–462

    CrossRef  PubMed  CAS  Google Scholar 

  • Tangahu B, Sheikh Abdullah S, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:31

    CrossRef  Google Scholar 

  • Tekaya N, Saiapina O, Ouada H, Lagarde F, Namour P, Ouada H, Jaffrezic-Renault N (2014) Bi-Enzymatic conductometric biosensor for detection of heavy metal ions and pesticides in water samples based on enzymatic inhibition in arthrospira platensis. J Environ Prot (Irvine, Calif) 5:441–453

    CrossRef  CAS  Google Scholar 

  • Teng Y, Wang X, Li L, Li Z, Luo Y (2015) Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front Plant Sci 6:32

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Tian M, Qu J, Han X, Zhang M, Ding C, Ding J, Chen G, Yu S (2013) Microarray-based identification of differentially expressed genes in intracellular Brucella abortus within RAW264. 7 cells. PLoS One 8:e67014

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • US EPA 2000 Supplementary guidance for conducting health risk assessment of chemical mixtures, Risk Assessment Forum Technical Panel [EPA/630/R-00/002]

    Google Scholar 

  • Vara Prasad M, de Oliveira FH (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321

    Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Meena RS (2015) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    CrossRef  Google Scholar 

  • Vidal C, Chantreuil C, Berge O, Maure L, Escarre J, Bena G, Brunel B, Cleyet-Marel J (2009) Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. Int J Syst Evol Microbiol 59:850–855

    CrossRef  PubMed  CAS  Google Scholar 

  • von Rozycki T, Nies D (2009) Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie Van Leeuwenhoek 96:115–139

    CrossRef  CAS  Google Scholar 

  • Wang Z, Xiao Y, Chen W, Tang K, Zhang L (2009) Functional expression of Vitreoscilla hemoglobin (VHb) in Arabidopsis relieves submergence, nitrosative, photo-oxidative stress and enhances antioxidants metabolism. Plant Sci 176:66–77

    CrossRef  CAS  Google Scholar 

  • Wang X, Nie Z, He L, Wang Q, Sheng X (2017) Isolation of As-tolerant bacteria and their potentials of reducing As and Cd accumulation of edible tissues of vegetables in metal(loid)-contaminated soils. Sci Total Environ 579:179–189

    CrossRef  PubMed  CAS  Google Scholar 

  • Wani P, Khan M (2012) Bioremediaiton of lead by a plant growth promoting Rhizobium species RL9. Bacteriol J 2:66–78

    CrossRef  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45

    CrossRef  PubMed  CAS  Google Scholar 

  • Wani P, Khan M, Zaidi A (2008a) Effects of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol 81:152–158

    CrossRef  PubMed  CAS  Google Scholar 

  • Wani P, Khan M, Zaidi A (2008b) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163

    CrossRef  PubMed  CAS  Google Scholar 

  • Wani P, Khan M, Zaidi A (2008c) Impact of zinc-tolerant plant growth-promoting rhizobacteria on lentil grown in zinc-amended soil. Agron Sustain Dev 28:449–455

    CrossRef  CAS  Google Scholar 

  • Wani P, Zaidi A, Khan M (2009) Chromium reducing and plant growth promoting potential of Mesorhizobium species under chromium stress. Biorem J 13:121–129

    CrossRef  CAS  Google Scholar 

  • Wei G, Fan L, Zhu W, Fu Y, Yu J, Tang M (2009) Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China. J Hazard Mater 162:50–56

    CrossRef  PubMed  CAS  Google Scholar 

  • Williams PN, Lei M, Sun G, Huang Q, Lu Y, Deacon C, Meharg AA, Zhu Y-G (2009) Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environ Sci Technol 43:637–642

    CrossRef  PubMed  CAS  Google Scholar 

  • Xie P, Hao X, Mohamad O, Liang J, Wei G (2013) Comparative study of chromium biosorption by Mesorhizobium amorphae strain CCNWGS0123 in single and binary mixtures. Appl Biochem Biotechnol 162:570–587

    CrossRef  CAS  Google Scholar 

  • Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das, Layek J, Saha P (2017a) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158:29–37

    CrossRef  Google Scholar 

  • Yadav GS, Lal R, Meena RS, Babu S, Das A, Bhomik SN, Datta M, Layak J, Saha P (2017b) Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in North Eastern region of India. Ecol India. http://www.sciencedirect.com/science/article/pii/S1470160X17305617

  • Yu X, Li Y, Zhang C, Liu H, Liu J, Zheng W, Kang X, Leng X, Zhao K, Gu Y, Zhang X, Xiang Q, Chen Q (2014) Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua, China. PLoS One 9:e106618

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh B, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    CrossRef  PubMed  CAS  Google Scholar 

  • Zhang J, Min H (2010) Characterization of a multimetal resistant Burkholderia fungorum isolated from an e-waste recycling area for its potential in Cd sequestration. World J Microbiol Biotechnol 26:371–374

    CrossRef  CAS  Google Scholar 

  • Zhengwei Z, Fang W, Lee H, Yang Z (2005) Responses of Azorhizobium caulinodans to cadmium stress. FEMS Microbiol Ecol 54:455–461

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kawtar Fikri-Benbrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lebrazi, S., Fikri-Benbrahim, K. (2018). Rhizobium-Legume Symbioses: Heavy Metal Effects and Principal Approaches for Bioremediation of Contaminated Soil. In: Meena, R., Das, A., Yadav, G., Lal, R. (eds) Legumes for Soil Health and Sustainable Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_7

Download citation