Skip to main content

Grain Legumes: Impact on Soil Health and Agroecosystem

Abstract

Legumes are one of the richest sources of proteins, minerals, and fibers for animals and human being. They also have a great role in maintaining soil fertility through biological nitrogen fixation (BNF). Legumes help in solubilizing insoluble phosphorus (P) in soil, improving the soil physical environment, and increasing soil microbial activity and also have smothering effect on weed. Due to these positive roles in improving soil health and excellent adaptability to marginal environment, legumes are now considered as one of the important components of a cropping system. To reduce poverty, hunger, malnutrition, and environmental degradation, legume crop can be a substitute for cereal crop in marginal lands. Rediscoveries in genetics and genomics now open up new opportunities for improving productivity and quality in grain legume research. The carryover of nitrogen (N) derived from legume grain either in crop senescence or in intercropping system for succeeding crop is important. The necessitate of the interdisciplinary study on grain legumes to address their important role on soil health. Thus, the maximum beneficial effect in modern agriculture as the optimization of fertilizer N use is an essential not only to maintain and restore soil organic carbon (SOC) but also to minimize the nitrate pollution from agricultural source.

Keywords

  • Grain legumes
  • Nitrogen yield
  • Protein yield
  • Biological nitrogen fixation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-0253-4_16
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-981-13-0253-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 16.1
Fig. 16.2

Abbreviations

AM:

Arbuscular mycorrhizal fungi

BNF:

Biological nitrogen fixation

CED:

Chronic energy deficiency

ISFM:

Integrated soil fertility management practices

PEM:

Protein energy malnutrition

PGPR:

Plant growth-promoting rhizobacteria

SMB:

Soil microbial biomass

SOC:

Soil organic carbon

References

  • Adu-Gyamfi JJ, Ito O, Yoneyama T, Katayama K (1997) Nitrogen management and biological nitrogen fixation in sorghum/pigeonpea intercropping on Alfisols of the semi-arid tropics. Soil Sci Plant Nutr 43(1):1061–1066

    CrossRef  CAS  Google Scholar 

  • Alexandratos N (2009) World food and agriculture to 2030/50 highlights and views from mid-2009, Expert Meeting on How to feed the World in 2050, Food and Agriculture Organization of the United Nations, Economic and Social Development Department, 24–26 Jun 2009

    Google Scholar 

  • Alpmann D, Braun J, Schäfer BC (2013) Analyseeiner BefragunguntererfolgreichenKörnerleguminosenanbauernimkonventionellenLandbau, Erste ErgebnisseausdemForschungsprojekt LEGUAN, In: ImFokus: HeimischeKörnerleguminosenvomAnbaubiszurNutzung, DLG Wintertagung, 15–17 Jan 2013

    Google Scholar 

  • Alvey S, Yang CH, Buerkert A, Crowley DE (2003) Cereal/legume rotation effects on rhizosphere bacterial community structure in West African soils. BiolFertil Soils 37:73–82

    Google Scholar 

  • Anderson TH, Domsch KH (1989) Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil BiolBiochem 21:471–479

    CrossRef  Google Scholar 

  • Andrews DJ, Kassam AH (1976) The importance of multiple cropping in increasing world food supplies, ASA Special Publication, vol 27. American Society of Agronomy, Madison, pp 1–10

    Google Scholar 

  • Arab EAA, Helmy IMF, Bareh GF (2010) Nutritional evaluation and functional properties of chickpea (Cicer arietinum L.) flour and the improvement of spaghetti produced from its. J Am Sc 6(10):1055–1072

    Google Scholar 

  • Asghari HR, Cavagnaro TR (2011) Arbuscular mycorrhizas enhance plant interception of leached nutrients. Funct Plant Biol 38:219–226

    CrossRef  PubMed  Google Scholar 

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    CrossRef  Google Scholar 

  • Bellaloui N, Mengistu A, Kassem MA (2013) Effects of genetics and environment on fatty acid stability on soybean seed. Food NutrSci 4:165–175

    CAS  Google Scholar 

  • Bertoglio JC, Calvo MA, Hancke JL, Burgos RA, Riva A, Morazzoni P, Ponzone C, Magni C, Durant M (2011) Hypoglycemic effect of lupin seed γ-conglutin in experimental animals and healthy human subjects. Fitoterapia 82(7):933–938

    PubMed  CrossRef  CAS  Google Scholar 

  • Bhatt BP, Bujarbaruah KM (2006) Agroforestry in North East India: opportunities and challenges (© 2005), ICAR Research Complex for NEH Region, Umiam, Meghalaya

    Google Scholar 

  • Blanchart E, Villenave C, Viallatoux A, Barthès B, Girardin C, Azontonde A, Fellera C (2006) Long-term effect of a legume cover crop (Mucuna pruriens var. utilis) on the communities of soil macrofauna and nematofauna, under maize cultivation, in southern Benin. Eur J Soil Biol 42:S136–S144

    CrossRef  Google Scholar 

  • Boudreau MA, Mundt CC (1992) Mechanisms of alterations in bean rust epidemiology due to intercropping with maize. Phytopathology 82:1051–1060

    CrossRef  Google Scholar 

  • Braum SM, Helmke PA (1995) White lupin utilizes soil phosphorus that is unavailable to soybean. Plant Soil 176:95–100

    CrossRef  CAS  Google Scholar 

  • Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. BiolFertil Soils 19:269–279

    CrossRef  CAS  Google Scholar 

  • Bues A, Preissel S, Reckling M, Zander P, Kuhlman T, Topp K, Watson CA, Stoddard F, Bokem M (2013) The environmental role of protein crops in the new Common Agricultural Policy (D4). European Parliament, Directorate General for Internal Policies, Policy Department B: Structural and Cohesion Policies, Agricultural and Rural Development

    Google Scholar 

  • Campbell CA, Zentner RP (1993) Soil organic matter as influenced by crop rotation and fertilization. Soil SciSoc Am J 57:1034–1040

    CrossRef  CAS  Google Scholar 

  • Campbell CA, Bowren KE, Schnitzer M, Zentner RP, Townley-Smith L (1991) Effect of crop rotations and fertilization on soil organic matter and some biochemical properties of a thick Black Chernozem. Can J Soil Sci 71:377–387

    CrossRef  CAS  Google Scholar 

  • Carof M (2006) Fonctionnement de peuplementsen semis direct associant du blétendred’hiver (Triticumaestivum L.) à différentesplantes de couvertureenclimattempéré. INAPG (AgroParisTech)

    Google Scholar 

  • Chu GX, Shen QR, Cao JL (2004) Nitrogen fixation and N transfer from peanut to rice cultivated in aerobic soil in an intercropping system and its effect on soil N fertility. Plant Soil 263:17–27

    CrossRef  CAS  Google Scholar 

  • Clark CM, Yongfei B, Bowman William D, Cowles Jane M, Fenn Mark E, Gilliam Frank S, Phoenix Gareth K, Ilyas S, Stevens Carly J, Sverdrup Harald U, Throop Heather L (2013) Nitrogen deposition and terrestrial biodiversity. In: Levin SA (ed) Encyclopedia of biodiversity, vol 5, 2nd edn. Academic, Waltham, pp 519–536

    CrossRef  Google Scholar 

  • Cloern J, Krantz T, Duffy JE (2007) Eutrophication. In: Cleveland CJ (ed) Encyclopedia of earth. Environmental information coalition. National Council for Science and the Environment, Washington, DC. Available at http://www.eoearth.org/article/Eutrophication. Last revised December 18, 2007

    Google Scholar 

  • Collette L, Hodgkin T, Kassam A, Kenmore P, Lipper L, Nolte C, et al. (2011) Save and grow: a policymaker’s guide to the sustainable intensification of smallholder crop production. Food and Agriculture Organization of the United Nations (FAO), Rome. isbn:978-92-5-106871-7

    Google Scholar 

  • Conen F, Dobbie KE, Smith KA (2000) Predicting N2O emissions from agricultural land through related soil parameters. Glob Chang Biol 6:417–426

    CrossRef  Google Scholar 

  • Cooper P, Rao KPC, Singh P, Traore PS, Rao K, Dixit P, Twomlow SJ (2009) Farming with current and future climate risk: advancing a “hypothesis of hope” for rainfed agriculture in the semi-arid tropics. J SAT Agric Res 7:1–19

    Google Scholar 

  • Costa GEA, Queiroz-Monici KS, Reis SMPM, Oliveira AC (2006) Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem 94:327–330

    CrossRef  CAS  Google Scholar 

  • Courty PE, Smith P, Koegel S, Redecker D, Wipf D (2015) Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions. Crit Rev Plant Sci 34(1–3):4–16

    CrossRef  CAS  Google Scholar 

  • Cousin R (1997) Peas (Pisum sativum L.). Field Crop Res 53:111–130

    CrossRef  Google Scholar 

  • Cowell LE, Bremer E, Van Kessel C (1989) Yield and N, fixation of pea and lentil as affected by intercropping and N application. Can J Soil Sci 69:243–251

    CrossRef  Google Scholar 

  • Danso SKA, Zapata F, Hardarson G (1987) Nitrogen fixation in fababeans as affected by plant population density in sole or intercropped systems with barley. Soil BiolBiochem 19(4):411–415

    CrossRef  Google Scholar 

  • De AntoniMigliorati M, Bell M, Grace PR, Scheer C, Rowlings DW, Liu S (2015) Legume pastures can reduce N2O emissions intensity in subtropical cereal cropping systems. Agric Ecosyst Environ 204:27–39

    CrossRef  CAS  Google Scholar 

  • Devi MJ, Sinclair TR, Vadez V, Krishnamurthy L (2009) Peanut genotypic variation in transpiration efficiency and decreased transpiration during progressive soil drying. Field Crop Res 114:280–285

    CrossRef  Google Scholar 

  • Dhakal Y, Meena RS, De N, Verma SK, Singh A (2015) Growth, yield and nutrient content of mungbean (Vigna radiata L.) in response to INM in eastern Uttar Pradesh, India. Bangladesh J Bot 44(3):479–482

    Google Scholar 

  • Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Leg Res 39(4):590–594

    Google Scholar 

  • Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396:262–264

    CrossRef  CAS  Google Scholar 

  • Duranti M (2006) Grain legume proteins and nutraceutical properties. Fitoterapia 77(2):67–82

    PubMed  CrossRef  CAS  Google Scholar 

  • Duranti M, Gius C (1997) Legume seeds: protein content and nutritional value. Field Crop Res 53(1–3):31–45

    CrossRef  Google Scholar 

  • Ehlers JD, Hall AE (1997) Cowpea (Vigna unguiculata L. Walp.). Field Crop Res 53:187–204

    CrossRef  Google Scholar 

  • El-Al HA, El-Hwat N, El-Hefnawy N, Medany M (2011) Effect of sowing dates, irrigation levels and climate change on yield of common bean (phaseolus vulgaris L.). AmEur J Agri Environ Sci 11(1):79–86

    Google Scholar 

  • Fang X, Turner NC, Yan G, Li F (2010) Flower numbers, pod production, pollen viability and pistil production are reduced and flower and pod abortion increased in chick pea (Cicer arietinum L.) under terminal drought. J Exp Bot 61:335–345

    PubMed  CrossRef  CAS  Google Scholar 

  • Fatima Z, Bano A, Sial R, Aslam M (2008) Response of chickpea to plant growth regulators on nitrogen fixation and yield. Pak J Bot 40(5):2005–2013

    CAS  Google Scholar 

  • Fininsa C (1996) Effect of intercropping bean with maize on bean common bacterial blight and rust diseases. Int J Pest Manag 42:51–54

    CrossRef  Google Scholar 

  • Francis CA (1986) Multiple cropping systems. Macmillan, New York

    Google Scholar 

  • Franzluebbers AJ (2002) Soil organic matter stratification ratio as an indicator of soil quality. Soil TillRes 66:95–106

    Google Scholar 

  • Fujita K, Ofosu-Budu KG, Ogata S (1992) Biological nitrogen fixation in mixed legume-cereal cropping systems. Plant Soil 141:155–176

    CrossRef  CAS  Google Scholar 

  • Garcia MC, Marina ML, Laborda F, Torre M (1998) Chemical characterization of commercial soybean products. Food Chem 62:325–331

    CrossRef  Google Scholar 

  • Garcia-Estringanaa P, Alonso-Blázqueza N, Marquesa MJ, Bienesa R, González-Andrésc F, Alegrea J (2013) Use of Mediterranean legume shrubs to control soil erosion and runoff in central Spain. A large-plot assessment under natural rainfall conducted during the stages of shrub establishment and subsequent colonisation. Catena 102:3–12

    CrossRef  Google Scholar 

  • Ghosh PK (2004) Growth, yield, competition and economics of groundnut/cereal fodder intercropping systems in the semi-arid tropics of India. Field Crop Res 88:227–237

    CrossRef  Google Scholar 

  • Ghosh PK, Singh NP (1994) Soil-nitrogen status under summer legumes-maize (Zea mays) sequence. Indian J AgricSci 641(12):856–857

    Google Scholar 

  • Ghosh PK, Manna MC, Bandyopadhyay KK, Tripathi AK, Wanjari RH, Hati KM, Misra AK, Acharya CL, Subba Rao A (2005) Interspecific interaction and nutrient use in soybean/sorghum intercropping system. Agron J 98(4):1097–1108

    CrossRef  Google Scholar 

  • Ghosh PK, Bandyopadhyay KK, Wanjari RH, Manna MC, Misra AK, Mohanty M, SubbaRao A (2007) Legume effect for enhancing productivity and nutrient use-efficiency in major cropping systems–an Indian perspective: a review. J Sustai Agri 30(1):59–86. https://doi.org/10.1300/J064v30n01_07

    CrossRef  Google Scholar 

  • Gianinazzi S, Wipf D (2010) Des champignons au service des plantes. PHM–Revue Hortic 521:9–11

    Google Scholar 

  • Gilbert GA, Knight JD, Vance CP, Allan DL (1999) Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ 22:801–810

    CrossRef  CAS  Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems, vol 423, 2nd edn. CABI, Wallingford

    CrossRef  Google Scholar 

  • Goni I, Valentin-Gamazo C (2003) Chickpea flour ingredient slows glycemic response to pasta in healthy volunteers. Food Chem 81(4):511–515

    CrossRef  CAS  Google Scholar 

  • Gruhn P, Goletti F, Yudelman M (2000) Integrated nutrient management, soil fertility, and sustainable agriculture: current issues and future challenges. International food policy research Institute, Washinton, DC

    Google Scholar 

  • Gu J, Nicoullaud B, Rochette P, Grossel A, Hénault C, Cellier P, Richard G (2013) A regional experiment suggests that soil texture is a major control of N2O emissions from tile-drained winter wheat fields during the fertilization period. Soil BiolBiochem 60:134–141

    CrossRef  CAS  Google Scholar 

  • Harland JI, Haffner TA (2008) Systematic review, meta-analysis and regression of randomised controlled trials reporting an association between an intake of circa 25 g soya protein per day and blood cholesterol. Atherosclerosis 200(1):13–27

    PubMed  CrossRef  CAS  Google Scholar 

  • Hauggaard-Nielsen H, Ambus P, Jensen ES (2001) Interspecific competition, N use and interference with weeds in pea-barley intercropping. Field Crop Res 70:101–109

    CrossRef  Google Scholar 

  • Hauggaard-Nielsen H, Jørnsgaard B, Kinane J, Jensen ES (2008) Grain legume-cereal intercropping: the practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew Agric Food Syst 23:3–12

    CrossRef  Google Scholar 

  • Hayat R, Ali S, Ijaz SS, Chatha TH, Siddique MT (2008) Estimation of N2-fixation of mung bean and mash bean through xylem ureide technique under rainfed conditions. Pak J Bot 40(2):723–734

    CAS  Google Scholar 

  • Hayman DS (1986) Mycorrhizae of nitrogen fixing legumes. World J MicrobioBiotechno 2(1):121–145

    Google Scholar 

  • Hazarika UK, Munda GC, Bujarbaruah KM, Das A, Patel DP, Prasad K, Kumar R, Panwar AS, Tomar JMS, Bordoloi JS, Sharma M, Gogoi G (2006) Nutrient management in organic farming. Technical Bulletin No 30, ICAR Research Complex for NEH Region, Meghalaya

    Google Scholar 

  • Heichel GH (1987) Legume nitrogen: symbiotic fixation and recovery by subsequent crops. In: Heisel Z (ed) Energy in plant nutrition and pest control. Energy World Agric Elsevier, New York

    Google Scholar 

  • Heichel GH, Barnes DK (1984) Opportunities for meeting crop nitrogen needs from symbiotic nitrogen fixation. In: Bezdicek DF (ed) Organic farming, Spec. Pub., vol 46. ASA, CSSA, SSSA, Madison

    Google Scholar 

  • Helal HM (1990) Varietal difference in root phosphatase activity as related to the utilization of organic phosphorus. In: Bassam N (ed) Genetic aspects of plant mineral nutrition. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hodge I (2000) Agri-environmental Relationships and the choice of policy mechanism. World Econ 23(2):257–273

    CrossRef  Google Scholar 

  • Howeler RH (1987) Soil conservation practices in cassava-based cropping systems. In: Thay TH, Mokhtaeruddin AM, Zahari AB (eds) Proc. Intern. Conf. streep land Agric. In Humid Tropics, held in Kuala Lumpur, Malaysia. Aug 16–21, 1987. p 490–517

    Google Scholar 

  • Howeler RH (1994) Integrated soil and crop management to prevent environmental degradation in cassava-based cropping system in Asia. In: Bottema JWT, Stoltz DR (eds.) Upland agriculture in Asia. Proceeding of workshop held in Bogor, Indonesia. April 6–8, 1993. pp. 195–224 http://agritech.tnau.ac.in/agriculture/pulses_index.html. Accessed on 27 Mar 2017

  • Huang WY (2007) Impact of rising natural gas prices on U.S. ammonia supply, Outlook Report No. (WRS-0702). USDA Economic Research Service, Washington, DC

    Google Scholar 

  • Insam H, Parkinson D, Domsch KH (1989) The influence of macroclimate on soil microbial biomass levels. Soil BiolBiochem 21:211–221

    CrossRef  Google Scholar 

  • Intergovernmental Panel on Climate Change (2013) Climate change 2013: the physical science basis. Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK et al (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK. Available:: http://www.climatechange2013.org/images/uploads/WGI_AR5_SPM_brochure.pdf. Accessed on 4 Apr 2017

  • Iqbal A, Khalil IA, Ateeq N, Khan MS (2006) Nutritional quality of important food legumes. Food Chem 97:331–335

    CrossRef  CAS  Google Scholar 

  • Javaid A, Ghafoor A, Anwar R (2004) Seed storage protein electrophoresis in ground nut for evaluating genetic diversity. Pak J Bot 36(1):25–29

    Google Scholar 

  • Jeanneret P, Baumgartner D, Freiermuth R, Gaillard G (2006) Méthoded’évaluation de l’impact des activitésagricolessur la biodiversitédans les bilansécologiques. SALCA-BD, Rapport Agroscope 67

    Google Scholar 

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soil measurement and turnover. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Marcel Dekker, New York, pp 415–471

    Google Scholar 

  • Jensen ES (1996) Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 182:25–38

    CrossRef  CAS  Google Scholar 

  • Jensen ES, Hauggaard-Nielsen H (2003) How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil 252:177–186

    CrossRef  CAS  Google Scholar 

  • Jensen ES et al. (2005) Intercropping-the practical application of diversity, competition and facilitation in arable and organic cropping systems; In: Researching Sustainable Systems. Proceedings of the First Scientific Conference of the International Society of Organic Agricultural Research (ISOFAR) p 22–25

    Google Scholar 

  • Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJR, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries-a review. Agron SustainDev 32:329–364

    CrossRef  CAS  Google Scholar 

  • Jeuffroy M, Baranger E, Carrouée B, Ed C, Gosme M, Hénault C, Schneider A, Cellier P (2013) Nitrous oxide emissions from crop rotations including wheat, rapeseed and dry pea. Biogeosci Discuss 9(7):9289

    CrossRef  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, van Hees PAW (2003) Organic acid behavior in soils- misconceptions and knowledge gaps. Plant Soil 248(1):31–41

    CrossRef  CAS  Google Scholar 

  • Justus M, Köpke U (1995) Strategies to reduce nitrogen losses via leaching and to increase Precrop effects when growing Faba beans. Biol Agric Hortic: Inter J Sustain Prod Syst 11(1–4):145–155

    CrossRef  Google Scholar 

  • Khadka K, Acharya BD (2009) Cultivation practices of ricebean. Local Initiatives for Biodiversity, Research and Development (LI-BIRD), Pokhara

    Google Scholar 

  • Kirkegaard J, Christen O, Krupinsky J, Layzell D (2008) Break crop benefits in temperate wheat production. Field Crop Res 107(3):185–195

    CrossRef  Google Scholar 

  • Klauer SF, Francesch VR (1997) Mechanism of transport of vegetative storage proteins to the vacuole of the paraveinal mesophyll of soybean leaf. Protoplasma 200(3):174–185

    CrossRef  CAS  Google Scholar 

  • Köpke U, Nemecek T (2010) Ecological services of faba bean. Field Crop Res 115(3):217–233

    CrossRef  Google Scholar 

  • Kudapa H, Ramalingam A, Nayakoti S, Chen X, Zhuang W, Liang X, Kahl G, Edwards D, Varshney RK (2013) Functional genomics to study stress responses in crop legumes: progress and prospects. Funct Plant Biol 40(12):1221–1233

    CrossRef  CAS  PubMed  Google Scholar 

  • Laddha KC, Totawat KL (1997) Effects of deep tillage under rainfed agriculture on production of sorghum (So$z~rn biocolor L. Moench) intercropped with green gram (Vigna radiata L. ‘Wilczek) in western India. Soil Tillage Res 43:241–250

    CrossRef  Google Scholar 

  • Landers PS (2007) The food stamp program: history, nutrition education, and impact. J Am Diet Assoc 107(11):1945–1951

    PubMed  CrossRef  Google Scholar 

  • Lansing AJ, Franceschi VR (2000) The paraveinal mesophyll: a specialized path for intermediary transfer of assimilates in legume leaves. Aust J Plant Physiol 27:757–767

    CAS  Google Scholar 

  • Latati M, Blavet D, Alkama N, Laoufi H, Drevon JJ, Gérard F, Pansu M, Ounane SM (2014) The intercropping cowpea-maize improves soil phosphorus availability and maize yields in an alkaline soil. Plant Soil 385:181–191

    CrossRef  CAS  Google Scholar 

  • Lemke RL, Zhonga Z, Campbell CA, Zentner R (2007) Can pulse crops play a role in mitigating greenhouse gases from north American agriculture? Agron J 99(6):1719–1725

    CrossRef  CAS  Google Scholar 

  • Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorous-deficient soils. Proc Natl Acad Sci 104:11192–11196

    PubMed  CrossRef  PubMed Central  CAS  Google Scholar 

  • Li H, Shen J, Zhang F, Marschner P, Cawthray G, Rengel Z (2009) Phosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soil. BiolFertil Soils 46:79–91

    CrossRef  CAS  Google Scholar 

  • Liang S, Grossman J, Shi W (2014) Soil microbial responses to winter legume cover crop management during organic transition. Eur J Soil Biol 65:15–22

    CrossRef  CAS  Google Scholar 

  • Liu L, Wang Y, Yan X, Li J, Jiao N, Hu S (2017) Biochar amendments increase the yield advantage of legume-based intercropping systems over monoculture. AgricEcosyst Environ 237:16–23

    CrossRef  CAS  Google Scholar 

  • Lopez-Bellido RJ, Fontána JM, López-Bellidob FJ, López-Bellidoa L (2009) Carbon sequestration by tillage, rotation, and nitrogen fertilization in a Mediterranean vertisol. Agron J 102(1):310–318

    CrossRef  CAS  Google Scholar 

  • Loss SP, Siddique KHM, Tennant D (1997) Adaptation of faba bean (Vicia faba L.) to dryland Mediterranean-type environments. III. Water use and water-use efficiency. Field Crop Res 54:153–162

    CrossRef  Google Scholar 

  • Mandal MK, Banerjee M, Banerjee H, Alipatra A, Malik GC (2014) Productivity of maize (zea mays) based intercropping system during kharif season under red and lateritic tract of West Bengal. Bioscan 9(1):31–35

    Google Scholar 

  • Mantri N, Basker N, Ford R, Pang E, Pardeshi V (2013) The role of micro-ribonucleic acids in legumes with a focus on abiotic stress response. Plant Genome 6(3):1–14

    CrossRef  CAS  Google Scholar 

  • Masuda T, Goldsmith PD (2009) World soybean production: area harvested, yield, and long-term projections. Int Food Agribusiness Manag Rev 12(4):143–162

    Google Scholar 

  • McDonald GK, Hollaway KL, McMurray L (2007) Increasing plant density improves weed competition in lentil (Lens culinaris). Aust J ExpAgric 47:48–56

    CrossRef  Google Scholar 

  • McGill WB, Cannon KR, Robertson JA, Cook FD (1986) Dynamics of soil microbial biomass and water-soluble organic C in Breton L. after 50 years of cropping to two rotations. Can J Soil Sci 66:1–19

    CrossRef  Google Scholar 

  • Meena RS, Yadav RS (2015) Yield and profitability of groundnut (Arachis hypogaea L) as influenced by sowing dates and nutrient levels with different varieties. Leg Res 38(6):791–797

    Google Scholar 

  • Meena VS, Maurya BR, Meena RS, Meena SK, Singh NP, Malik V K (2014) Microbial dynamics as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi, India

    Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    CrossRef  Google Scholar 

  • Meena VS, Maurya BR, Meena RS (2015b) Residual impact of well-grow formulation and NPK on growth and yield of wheat (Triticum aestivum L.). Bangladesh J Bot 44(1):143–146

    CrossRef  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015c) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    CrossRef  Google Scholar 

  • Meena RS, Yadav RS, Meena H, Kumar S, Meena YK, Singh A (2015d) Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. J Clean Prod 104:513–515

    CrossRef  Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Shiiag SK (2016) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112:1258–1260

    CrossRef  Google Scholar 

  • Meena RS, Meena PD, Yadav GS, Yadav SS (2017a) Phosphate solubilizing microorganisms, principles and application of microphos technology. J Clean Prod 145:157–158

    CrossRef  Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2017b) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Reg., Accepted in press African J Microb Res 8(1):257–263

    Google Scholar 

  • Morris JB (1997) Special-purpose legume genetic resources conserved for agricultural, industrial, and pharmaceutical use. Econ Bot 51(3):251–263

    CrossRef  Google Scholar 

  • Mucheru-Muna M, Pypers P, Mugendi D, Kung’u J, Mugwe J, Merckx R, Vanlauwe B (2010) Staggered maize–legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. Field Crop Res 115:132–139

    CrossRef  Google Scholar 

  • Nemecek T, Richthofen JV, Dubois G, Casta P, Charles R, Pahlf H (2008) Environmental impacts of introducing grain legumes into European crop rotations. Eur J Agron 28:380–393

    CrossRef  Google Scholar 

  • Nuruzzaman M, Lambers H, Bolland MDA, Veneklaas EJ (2006) Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes. Plant Soil 281(1):109–120

    CrossRef  CAS  Google Scholar 

  • Nwoke OC, Diels J, Abaidoo R, Nziguheba G, Merckx R (2008) Organic acids in the rhizosphere and root characteristics of soybean (Glycine max) and cowpea (Vigna unguiculata) in relation to phosphorus uptake in poor savanna soils. Afri J Biotech 7(20):3620–3627

    CAS  Google Scholar 

  • Okereke GU, Ayama N (1992) Sources of nitrogen and yield advantages for monocropping and mixed cropping with cowpeas (Vigna unguiculata L.) and upland rice (Oryza sativa L.). BiolFertil Soils 13:225–228

    CrossRef  CAS  Google Scholar 

  • Paetau I, Chen CZ, Jane JJ (1994) Biodegradable plastic made from soybean products. 1.Effect of preparation and processing on mechanical-properties and water-absorption. J EnviroPolyDegrad 2(3):211–217

    Google Scholar 

  • Pandey AK, Prasad K, Singh P, Singh RD (1998) Comparative yield loss assessment and crop-weed association in major winter crops of mid hills of N-W Himalayas. Indian J Weed Sci 30:54–57

    Google Scholar 

  • Paolini R, Colla G, Saccardo F, Campiglia E (2003) The influence of crop plant density on the efficacy of mechanical and reduced-rate chemical weed control in lentil (Lens culinarisMedik.). Ital J Agron 7:85–94

    Google Scholar 

  • Pappa VA, Rees RM, Walker RL, Baddeley JA, Watson CA (2011) Nitrous oxide emissions and nitrate leaching in an arable rotation resulting from the presence of an intercrop. AgricEcosyst Environ 141(1–2):153–161

    CrossRef  CAS  Google Scholar 

  • Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves BJR, Urquiaga S, Boddey RM, Dakora FD, Bhattarai S, Maskey SL, Sampet C, Rerkasem B, Khan DF, Hauggaard-Nielsen H, Jensen ES (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48(1):1–17

    CrossRef  CAS  Google Scholar 

  • Peyraud JL, Gall AL, Lüscher A (2009) Potential food production from forage legume-based-systems in Europe: an overview. Irish J Agric Food Res 48(2):115–135

    Google Scholar 

  • Plaza-Bonilla D, Álvaro-Fuentes J, Arrúe JL, Cantero-Martínez C (2014) Tillage and nitrogen fertilization effects on nitrous oxide yield-scaled emissions in a rainfed Mediterranean area. AgricEcosyst Environ 189:43–52

    CrossRef  CAS  Google Scholar 

  • Plaza-Bonilla D, Nolot JM, Passot S, Raffaillac D, Justes E (2016) Grain legume-based rotations managed under conventional tillage need cover crops to mitigate soil organic matter losses. Soil Till Res 156:33–43

    CrossRef  Google Scholar 

  • Power F, Stout JC (2011) Organic dairy farming: impacts on insect–flower interaction networks and pollination Eileen. J Appl Ecol 48:561–569

    CrossRef  Google Scholar 

  • Prakash D, Gupta C (2011) Role of phytoestrogens as nutraceuticals in human health. Pharmacologyonline 1:510–523

    Google Scholar 

  • Qiang C, Peng H, Gaobao H (2004) Effect of intercropping on soil microbial and enzyme activity in the rhizosphere. Acta Pratacult Sin 14:105–110

    Google Scholar 

  • Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in arid region of Rajasthan (India). Bangladesh J Bot 43(3):367–370

    Google Scholar 

  • Ramana S, Biswas AK, Kundu S, Saha JK, Yadava RBR (2002) Effect of distillery effluent on seed germination in some vegetable crops. Bioresour Technol 82(3):273–275

    PubMed  CrossRef  CAS  Google Scholar 

  • Reckling M, Preissel S, Zander P, Topp K, Watson C, Murphy-Bokern D, Stoddard FL (2014) Legume futures report 1.6 -effects of legume cropping on farming and food systems, legume-supported cropping systems for Europe. www.legumefutures.de. Accessed on 04 Apr 2017

  • Ruppenthal M, Leihner DE, Steinmuller N, El-Sharkawy MA (1997) Losses of organic matter and nutrients by water erosion in cassava-based cropping systems. Exp Agric 33:487–498

    CrossRef  Google Scholar 

  • Sanchez PA (1976) Properties and management of soils in the tropics. Wiley, New York, pp 478–532

    Google Scholar 

  • Sanginga N, Woomer PL (2009) Integrated soil fertility management in Africa: principles, practices and development process (eds.). Tropical Soil Biology and Fertility Institute of the International Centre for Tropical Agriculture, Nairobi 263

    Google Scholar 

  • Schelud’ko AV, Makrushin KV, Tugarova AV, Krestinenko VA, Panasenko VI, Antonyuk LP, Katsy EI (2009) Changes in motility of the rhizobacterium Azospirillum brasilense in the presence of plant lectins. Microbiol Res 164:149–156

    PubMed  CrossRef  CAS  Google Scholar 

  • Scheublin TR, Ridgway KP, Young JPW, van der Heijden MGA (2004) Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 70:6240–6246

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Shen H, Yan X, Zhao M, Zheng S, Wang X (2002) Exudation of organic acids in common bean as related to mobilization of aluminium- and iron-bound phosphates. Environ Exp Bot 48(1):1–9

    CrossRef  CAS  Google Scholar 

  • Shimelis EA, Rakshit SK (2005) Proximate composition and physico-chemical properties of improved dry bean (Phaseolus vulgaris L.) varieties grown in Ethiopia. LWT Food Sci Technol 38:331–338

    CrossRef  CAS  Google Scholar 

  • Siddique KHM, Loss SP, Pritchard DL, Regan KL, Tennant D, Jettner RL, Wilkinson D (1998) Adaptation of lentil (Lens culinarisMedik.) to Mediterranean-type environments: effect of time of sowing on growth, yield, and water use. Aust J Agric Res 49:613–626

    CrossRef  Google Scholar 

  • Siddique KHM, Regan KL, Tennant D, Thomson BD (2001) Water use and water use efficiency of cool season grain legumes in low rainfall Mediterranean-type environments. Eur J Agron 15:267–280

    CrossRef  Google Scholar 

  • Silva PMD, Tsai SM, Bonetti R (1993) Response to inoculation and N fertilization for increased yield and biological nitrogen fixation of common bean (Phaseolus vulgaris L.). Plant Soil 152:123–130

    CrossRef  Google Scholar 

  • Sinclair TR, Vadez V (2002) Physiological traits for crop yield improvement in low N and P environments. Plant Soil 245:1–15

    CrossRef  CAS  Google Scholar 

  • Sinclair TR, Muchow RC, Bennett JM, Hammond LC (1987) Relative sensitivity of nitrogen and biomass accumulation to drought in field-grown soybean. Agron J 79:986–991

    CrossRef  Google Scholar 

  • Singh VP (2000) Planting geometry in maize (Zea mays) and blackgram (Phaseolus mungo) intercropping system under rainfed low hill valley of Kumaon. Indian J Agron 45(2):274–278

    Google Scholar 

  • Singh RP (2013) Status paper on pulses. Government of India, Ministry of Agriculture (Department of Agriculture & Cooperation), Directorate of pulses Development, 6th floor, Vindhyanchal Bhavan, Bhopal-462004 (M.P)

    Google Scholar 

  • Sirtori CR, Galli C, Anderson JW, Sirtori E, Arnoldi A (2009) Functional foods for dyslipidaemia and cardiovascular risk prevention. Nutr Res Rev 22:244–261

    PubMed  CrossRef  CAS  Google Scholar 

  • Smith KA, Thomson PE, Clayton H, Mctaggart IP, Conen F (1998) Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmos Environ 32:3301–3309

    CrossRef  CAS  Google Scholar 

  • Song YN, Zhang FS, Marschner P, Fan FL, Gao HM, Bao XG, Sun JH, Li L (2006) Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). BiolFertil Soils 43:565–574

    CrossRef  CAS  Google Scholar 

  • Sørensen LH (1987) Organic matter and microbial biomass in a soil incubated in the field for 20 years with 14C-labelled barley straw. Soil Biol Biochem 19:39–42

    CrossRef  Google Scholar 

  • Sparling GP (1992) Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Aust J Soil Res 30:195–207

    CrossRef  CAS  Google Scholar 

  • Stevenson FJ (1982) Origin and distribution of nitrogen in soil. In: Stevenson FJ (ed) Nitrogen in agricultural soils. ASA, Madison

    Google Scholar 

  • Suman A, Lal M, Singh AK, Gaur A (2006) Microbial biomass turnover in Indian subtropical soils under different sugarcane intercropping systems. Agron J 98(3):698–704

    CrossRef  Google Scholar 

  • Tang X, Bernard L, Brauman A, Daufresne T, Deleporte P, Desclaux D, Souche G, Placella SA, Hinsinger P (2014) Increase in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditions. Soil Biol Biochem 75:86–93

    CrossRef  CAS  Google Scholar 

  • Thorup-Kristensen K, Magid J, Jensen LS (2003) Catch crops and green manures as biological tools in nitrogen management in temperate zones. Agron B-A Acad Press 79:227–302

    Google Scholar 

  • Tiwari RC, Sharma PK, Khandelwal SK (2004) Effect of green manuring through Sesbaniacannabina and Sesbaniarostrata and nitrogen application through maize (Zea mays) in maize– wheat (Triticumaestivum) cropping system. Indian J Agron 49(1):15–17

    Google Scholar 

  • Tobita S, Ito O, Matsunaga R, Rao TP, Rego TJ, Johansen C, Yoneyama T (1994) Field evaluation of nitrogen fixation and use of nitrogen fertilizer by sorghum/pigeonpea intercropping on an Alfisol in the Indian semi-arid tropics. Biol Fertil Soils 17:241–248

    CrossRef  Google Scholar 

  • Toomsan B, McDonagh JE, Limpinuntana V, Giller KE (1995) Nitrogen fixation by groundnut and soyabean and residual nitrogen benefits to rice in farmers’ fields in Northeast Thailand. Plant Soil 175:45–56

    CrossRef  CAS  Google Scholar 

  • Trasar-Cepeda C, Leiros C, Gil-Sotres F, Seoane S (1998) Towards biochemical quality index for soils: an expression relating several biological and biochemical properties. BiolFertil Soils 26:100–106

    CrossRef  CAS  Google Scholar 

  • Tribouillois H, Cruz P, Cohan JP, Justes É (2015) Modelling agroecosystem nitrogen functions provided by cover crop species in bispecific mixtures using functional traits and environmental factors. Agric Ecosyst Environ 207:218–228

    CrossRef  CAS  Google Scholar 

  • Umar AS, Iqbal M (2007) Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agron Sustain Dev 27:45–57

    CrossRef  CAS  Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2017) World population prospects: the 2017 revision, key findings and advance tables. Working paper No. ESA/P/WP1248

    Google Scholar 

  • Van Soest PJ (1994) Nutritional ecology of the ruminant, 2nd edn. Cornell University Press, Ithaca

    Google Scholar 

  • Vance CP, Graham PH, Allan DL (2000) Biological nitrogen fixation: phosphorus – a critical future need?, nitrogen fixation: from molecules to crop productivity. Curr Plant Sci Biotech Agric 38:509–514

    CrossRef  Google Scholar 

  • Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscularmycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564

    PubMed  CrossRef  CAS  Google Scholar 

  • Vandermeer JH (1992) The ecology of intercropping. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Varma D, Meena RS (2016) Mungbean yield and nutrient uptake performance in response of NPK and lime levels under acid soil in Vindhyan region, India. J Appl Nat Sci 8(2):860–863

    Google Scholar 

  • Varma D, Meena RS, Kumar S (2017) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan Region, India. Int J Chem Stu 5(2):384–389

    Google Scholar 

  • Varvel GE (1994) Rotation and nitrogen fertilization effects on changes in soil carbon and nitrogen. Agronomy J86:319–325

    CrossRef  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    CrossRef  Google Scholar 

  • Verma SK, Singh SB, Prasad SK, Meena RN, Meena RS (2015b) Influence of irrigation regimes and weed management practices on water use and nutrient uptake in wheat (Triticum aestivum L. Emend. Fiori and Paol.). Bangladesh J Bot 44(3):437–442

    Google Scholar 

  • Veronica NR, Estela HBB, Rocío CO, Luisa AA (2005) Allelopathic potential of beans (Phaseolus spp.) and other crops. Allelo J15:197–210

    Google Scholar 

  • Vinicius IF, Rosario A, Fernanda LM, Ricardo A (2013) Different interaction among glomus and rhizobium species on Phaseolus vulgaris and Zea mays plant growth, physiology and symbiotic development under moderate drought stress conditions. Plant Growth Regul 70:265–273

    CrossRef  CAS  Google Scholar 

  • Voisin AS, Guéguen J, Huyghe C, Jeuffroy MH, Magrini MB, Meynard JM, Mougel C, Pellerin S, Pelzer E (2014) Legumes for feed, food, biomaterials and bioenergy. Eur Agron Sustain Dev 34:361–338

    CrossRef  CAS  Google Scholar 

  • Von Richthofen JS, Pahl H, Casta P, Dubois G, Lafarga A, Nemecek T, Pedersen JB (2006) Economic impact of grain legumes in European crop rotations. Grain Leg 45:16–19

    Google Scholar 

  • Walley FL, Clayton GW, Miller PR, Carr PM, Lafond GP (2007) Nitrogen economy of pulse crop production in the Northern Great Plains. Agron J 99:1710–1718

    CrossRef  CAS  Google Scholar 

  • Wang D, Marschner P, Solaiman Z, Rengel Z (2007) Growth, P uptake and rhizosphere properties of intercropped wheat and chickpea in soil amended with iron phosphate or phytate. Soil BiolBiochem 39:249–256

    CrossRef  CAS  Google Scholar 

  • Wang S, Melnyk JP, Rong Tsao R, Marcone MF (2011) How natural dietary antioxidants in fruits, vegetables and legumes promote vascular health. Food Res Int 44:14–22

    CrossRef  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45

    PubMed  CrossRef  CAS  Google Scholar 

  • Warschefsky E, Penmetsa RV, Cook DR, von Wettberg EJ (2014) Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. Am J Bot 101:1791–1800

    PubMed  CrossRef  Google Scholar 

  • Wattiaux MA, Howard TM (2001) Technical dairy guide: nutrition and feeding. University of Wisconsin. http://babcock.cals.wisc.edu/de/html/ch6/nutrition_eng_ch6.html. Accessed on 04 Apr 2017

  • Yadav GS, Lal R, Meena RS, Babu S, Das A, Bhomik SN, Datta M, Layak J, Saha P (2017) Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in North Eastern Region of India. Ecol Indian. http://www.sciencedirect.com/science/article/pii/S1470160X17305617

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zaman-Allah M, Jenkinson DM, Vadez V (2011) Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. Funct Plant Biol 38(4):270–281

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Gogoi, N., Baruah, K.K., Meena, R.S. (2018). Grain Legumes: Impact on Soil Health and Agroecosystem. In: Meena, R., Das, A., Yadav, G., Lal, R. (eds) Legumes for Soil Health and Sustainable Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_16

Download citation