Skip to main content

Physicochemical Basis for Nanotoxicity Formation

  • Chapter
  • First Online:
Nanotoxicology in Caenorhabditis elegans
  • 359 Accesses

Abstract

The unique physicochemical properties of different engineered nanomaterials (ENMs) not only allow their potential industrial or medical applications at different aspects but also lead to different biological effects on organisms and interactions with targeted cells or tissues in organisms. The well-described cellular, developmental, molecular, and genetic backgrounds and the sensitivity to toxicity of environmental toxicants or stresses of Caenorhabditis elegans provide a powerful in vivo model system to determine the roles of physicochemical properties of ENMs in the toxicity formation of different ENMs in organisms. We here systematically introduce the important roles of different physicochemical properties of ENMs, mainly including size, surface charge, shape, surface groups, and impurity, in the toxicity formation of ENMs, which provides the underlying important chemical basis for the observed toxicity of ENMs in nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106:5–28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Zhao Y-L, Wu Q-L, Li Y-P, Wang D-Y (2013) Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Adv 3:5741–5757

    Article  CAS  Google Scholar 

  4. Wang D-Y (2016) Biological effects, translocation, and metabolism of quantum dots in nematode Caenorhabditis elegans. Toxicol Res 5:1003–1011

    Article  CAS  Google Scholar 

  5. Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177

    Article  CAS  PubMed  Google Scholar 

  6. Wu S, Lu J-H, Rui Q, Yu S-H, Cai T, Wang D-Y (2011) Aluminum nanoparticle exposure in L1 larvae results in more severe lethality toxicity than in L4 larvae or young adults by strengthening the formation of stress response and intestinal lipofuscin accumulation in nematodes. Environ Toxicol Pharmacol 31:179–188

    Article  CAS  PubMed  Google Scholar 

  7. Yu S-H, Rui Q, Cai T, Wu Q-L, Li Y-X, Wang D-Y (2011) Close association of intestinal autofluorescence with the formation of severe oxidative damage in intestine of nematodes chronically exposed to Al2O3-nanoparticle. Environ Toxicol Pharmacol 32:233–241

    Article  PubMed  CAS  Google Scholar 

  8. Li Y-X, Wang W, Wu Q-L, Li Y-P, Tang M, Ye B-P, Wang D-Y (2012) Molecular control of TiO2-NPs toxicity formation at predicted environmental relevant concentrations by Mn-SODs proteins. PLoS One 7(9):e44688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wu Q-L, Nouara A, Li Y-P, Zhang M, Wang W, Tang M, Ye B-P, Ding J-D, Wang D-Y (2013) Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere 90:1123–1131

    Article  PubMed  CAS  Google Scholar 

  10. Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL (2009) Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem 28(6):1324–1330

    Article  CAS  PubMed  Google Scholar 

  11. Collin B, Oostveen E, Tsyusko OV, Unrine JM (2014) Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ Sci Technol 48:1280–1289

    Article  CAS  PubMed  Google Scholar 

  12. Gorka DE, Osterberg JS, Gwin CA, Colman BP, Meyer JN, Bernhardt ES, Gunsch CK, DiGulio RT, Liu J (2015) Reducing environmental toxicity of silver nanoparticles through shape control. Environ Sci Technol 49:10093–10098

    Article  CAS  PubMed  Google Scholar 

  13. Ellegaard-Jensen L, Jensen KA, Johansen A (2012) Nano-silver induces dose-response effects on the nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 80:216–223

    Article  CAS  PubMed  Google Scholar 

  14. Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, Chilkoti A, Wiesner MR, Auffan M (2010) Intracel006Cular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100(2):140–150

    Article  CAS  PubMed  Google Scholar 

  15. Nouara A, Wu Q-L, Li Y-X, Tang M, Wang H-F, Zhao Y-L, Wang D-Y (2013) Carboxylic acid functionalization prevents the translocation of multi-walled carbon nanotubes at predicted environmental relevant concentrations into targeted organs of nematode Caenorhabditis elegans. Nanoscale 5:6088–6096

    Article  CAS  PubMed  Google Scholar 

  16. Wu Q-L, Li Y-X, Li Y-P, Zhao Y-L, Ge L, Wang H-F, Wang D-Y (2013) Crucial role of biological barrier at the primary targeted organs in controlling translocation and toxicity of multi-walled carbon nanotubes in nematode Caenorhabditis elegans. Nanoscale 5:11166–11178

    Article  CAS  PubMed  Google Scholar 

  17. Zhang W, Wang C, Li Z, Lu Z, Li Y, Yin J, Zhou Y, Gao X, Fang Y, Nie G, Zhao Y (2012) Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv Mater 24:5391–5397

    Article  CAS  PubMed  Google Scholar 

  18. Wu Q-L, Yin L, Li X, Tang M, Zhang T, Wang D-Y (2013) Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans. Nanoscale 5(20):9934–9943

    Article  PubMed  CAS  Google Scholar 

  19. Wu Q-L, Zhao Y-L, Fang J-P, Wang D-Y (2014) Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide. Nanoscale 6:5894–5906

    Article  CAS  PubMed  Google Scholar 

  20. Wu Q-L, Zhou X-F, Han X-X, Zhuo Y-Z, Zhu S-T, Zhao Y-L, Wang D-Y (2016) Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide. Biomaterials 102:277–291

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D. (2018). Physicochemical Basis for Nanotoxicity Formation. In: Nanotoxicology in Caenorhabditis elegans. Springer, Singapore. https://doi.org/10.1007/978-981-13-0233-6_5

Download citation

Publish with us

Policies and ethics