Advertisement

One-Dimensional Colloidal Hetero-Nanomaterials with Programmed Semiconductor Morphology and Metal Location for Enhancing Solar Energy Conversion

  • Tao-Tao Zhuang
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Tuning the photo-induced properties of a material requires the construction of particular nanostructures with controlled composition and morphology. Structural reconstruction of colloidal nanocrystal provides a flexible and practical strategy for creating ingenious heteronanostructures of relevance for applications. Unique binary -[ZnS-CdS]-ZnS-[ZnS-CdS]-ZnS- heteronanorods were synthesized by integrating one ZnS nanorod with segmented CdS tetrahedron sheaths, which can be further constructed ternary multi-tetrahedron sheath -[ZnS-(CdS/Au)]-ZnS-[ZnS-(CdS/Au)]-ZnS- heteronanorods with Au nanoparticles only being grown on the vertexes and edges of CdS tetrahedron sheaths. The well-steered charge flow in designed ternary system can effectively facilitate the separation and transfer of interfacial photo-generated charge carriers, leading to the performance improvement in photo-electric/chemical conversion applications.

References

  1. 1.
    Mann, S., Ozin, G.A.: Synthesis of inorganic materials with complex form. Nature 382, 313–318 (1996)CrossRefGoogle Scholar
  2. 2.
    Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.-M., van Schalkwijk, W.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005)CrossRefGoogle Scholar
  3. 3.
    Smith, A.M., Nie, S.: Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43, 190–200 (2009)CrossRefGoogle Scholar
  4. 4.
    Koenraad, P.M., Flatte, M.E.: Single dopants in semiconductors. Nat. Mater. 10, 91–100 (2011)CrossRefGoogle Scholar
  5. 5.
    Hakkinen, H.: The gold-sulfur interface at the nanoscale. Nat. Chem. 4, 443–455 (2012)CrossRefGoogle Scholar
  6. 6.
    Chhowalla, M., Shin, H.S., Eda, G., Li, L.-J., Loh, K.P., Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)CrossRefGoogle Scholar
  7. 7.
    Liu, Y., Goebl, J., Yin, Y.: Templated synthesis of nanostructured materials. Chem. Soc. Rev. 42, 2610–2653 (2013)CrossRefGoogle Scholar
  8. 8.
    Yin, Y., Talapin, D.: The chemistry of functional nanomaterials. Chem. Soc. Rev. 42, 2484–2487 (2013)CrossRefGoogle Scholar
  9. 9.
    Brongersma, M.L., Cui, Y., Fan, S.: Light management for photovoltaics using high-index nanostructures. Nat. Mater. 13, 451–460 (2014)CrossRefGoogle Scholar
  10. 10.
    Singh, G., Chan, H., Baskin, A., Gelman, E., Repnin, N., Kral, P., Klajn, R.: Self-assembly of magnetite nanocubes into helical superstructures. Science 345, 1149–1153 (2014)CrossRefGoogle Scholar
  11. 11.
    Costi, R., Saunders, A.E., Banin, U.: Colloidal hybrid nanostructures: a new type of functional materials. Angew. Chem. Int. Ed. 49, 4878–4897 (2010)CrossRefGoogle Scholar
  12. 12.
    Mayer, M.T., Lin, Y., Yuan, G., Wang, D.: Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Acc. Chem. Res. 46, 1558–1566 (2013)CrossRefGoogle Scholar
  13. 13.
    Qu, Y., Duan, X.: Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42, 2568–2580 (2013)CrossRefGoogle Scholar
  14. 14.
    Gao, M.R., Liang, J.X., Zheng, Y.R., Xu, Y.F., Jiang, J., Gao, Q., Li, J., Yu, S.H.: An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 6, 5982–5989 (2015)CrossRefGoogle Scholar
  15. 15.
    Huang, X., Zhao, Z., Cao, L., Chen, Y., Zhu, E., Lin, Z., Li, M., Yan, A., Zettl, A., Wang, Y.M., Duan, X., Mueller, T., Huang, Y.: High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015)CrossRefGoogle Scholar
  16. 16.
    Jing, L., Kershaw, S.V., Kipp, T., Kalytchuk, S., Ding, K., Zeng, J., Jiao, M., Sun, X., Mews, A., Rogach, A.L., Gao, M.: Insight into strain effects on band alignment shifts, carrier localization and recombination kinetics in CdTe/CdS core/shell quantum dots. J. Am. Chem. Soc. 137, 2073–2084 (2015)CrossRefGoogle Scholar
  17. 17.
    Chen, O., Zhao, J., Chauhan, V.P., Cui, J., Wong, C., Harris, D.K., Wei, H., Han, H.-S., Fukumura, D., Jain, R.K.: Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013)CrossRefGoogle Scholar
  18. 18.
    Hong, X.P., Kim, J., Shi, S.F., Zhang, Y., Jin, C.H., Sun, Y.H., Tongay, S., Wu, J.Q., Zhang, Y.F., Wang, F.: Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014)CrossRefGoogle Scholar
  19. 19.
    Xu, B., He, P., Liu, H., Wang, P., Zhou, G., Wang, X.: A 1D/2D Helical CdS/ZnIn2S4 Nano-Heterostructure. Angew. Chem. Int. Ed. 53, 2339–2343 (2014)CrossRefGoogle Scholar
  20. 20.
    Oh, N., Nam, S., Zhai, Y., Deshpande, K., Trefonas, P., Shim, M.: Double-heterojunction nanorods. Nat. Commun. 5, 3642 (2014)Google Scholar
  21. 21.
    Min, Y., Park, G., Kim, B., Giri, A., Zeng, J., Roh, J.W., Kim, S.I., Lee, K.H., Jeong, U.: Synthesis of multishell nanoplates by consecutive epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties. ACS Nano 9, 6843–6853 (2015)CrossRefGoogle Scholar
  22. 22.
    Xu, B., Li, H., Yang, H., Xiang, W., Zhou, G., Wu, Y., Wang, X.: Colloidal 2D-0D lateral nanoheterostructures: a case study of site-selective growth of CdS nanodots onto Bi2Se3 nanosheets. Nano Lett. 15, 4200–4205 (2015)CrossRefGoogle Scholar
  23. 23.
    Carbone, L., Cozzoli, P.D.: Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5, 449–493 (2010)CrossRefGoogle Scholar
  24. 24.
    Beberwyck, B.J., Surendranath, Y., Alivisatos, A.P.: Cation exchange: a versatile tool for nanomaterials synthesis. J. Phy. Chem. C 117, 19759–19770 (2013)CrossRefGoogle Scholar
  25. 25.
    Robinson, R.D., Sadtler, B., Demchenko, D.O., Erdonmez, C.K., Wang, L.-W., Alivisatos, A.P.: Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317, 355–358 (2007)CrossRefGoogle Scholar
  26. 26.
    Banin, U., Ben-Shahar, Y., Vinokurov, K.: Hybrid semiconductor-metal nanoparticles: from architecture to function. Chem. Mater. 26, 97–110 (2014)CrossRefGoogle Scholar
  27. 27.
    Weng, L., Zhang, H., Govorov, A.O., Ouyang, M.: Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis. Nat. Commun. 5, 4792 (2014)CrossRefGoogle Scholar
  28. 28.
    Alemseghed, M.G., Ruberu, T.P.A., Vela, J.: Controlled fabrication of colloidal semiconductor-metal hybrid heterostructures: site selective metal photo deposition. Chem. Mater. 23, 3571–3579 (2011)CrossRefGoogle Scholar
  29. 29.
    Manna, G., Bose, R., Pradhan, N.: Photocatalytic Au-Bi2S3 heteronanostructures. Angew. Chem. Int. Ed. 53, 6743–6746 (2014)CrossRefGoogle Scholar
  30. 30.
    Yu, X., Shavel, A., An, X., Luo, Z., Ibanez, M., Cabot, A.: Cu(2)ZnSnS(4)-Pt and Cu(2)ZnSnS(4)-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J. Am. Chem. Soc. 136, 9236–9239 (2014)CrossRefGoogle Scholar
  31. 31.
    Han, S.-K., Gu, C., Gong, M., Yu, S.-H.: A trialkylphosphine-driven chemical transformation route to Ag- and Bi-based chalcogenides. J. Am. Chem. Soc. 137, 5390–5396 (2015)CrossRefGoogle Scholar
  32. 32.
    Buck, M.R., Bondi, J.F., Schaak, R.E.: A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat. Chem. 4, 37–44 (2012)CrossRefGoogle Scholar
  33. 33.
    Mark, A.G., Gibbs, J.G., Lee, T.-C., Fischer, P.: Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12, 802–807 (2013)CrossRefGoogle Scholar
  34. 34.
    Ikeda, K., Kobayashi, Y., Negishi, Y., Seto, M., Iwasa, T., Nobusada, K., Tsukuda, T., Kojima, N.: Thiolate-induced structural reconstruction of gold clusters probed by 197Au Mössbauer spectroscopy. J. Am. Chem. Soc. 129, 7230–7231 (2007)CrossRefGoogle Scholar
  35. 35.
    Baranova, E., Fronzes, R., Garcia-Pino, A., Van Gerven, N., Papapostolou, D., Pehau-Arnaudet, G., Pardon, E., Steyaert, J., Howorka, S., Remaut, H.: SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature 487, 119–122 (2012)CrossRefGoogle Scholar
  36. 36.
    Lin, F., Markus, I.M., Nordlund, D., Weng, T.C., Asta, M.D., Xin, H.L., Doeff, M.M.: Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat Commun 5, 3529–3538 (2014)Google Scholar
  37. 37.
    Qiu, H., Hudson, Z.M., Winnik, M.A., Manners, I.: Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles. Science 347, 1329–1332 (2015)CrossRefGoogle Scholar
  38. 38.
    Zhuang, T.T., Liu, Y., Sun, M., Jiang, S.L., Zhang, M.W., Wang, X.C., Zhang, Q., Jiang, J., Yu, S.H.: A unique ternary semiconductor-(Semiconductor/Metal) nano-architecture for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 54, 11495–11500 (2015)CrossRefGoogle Scholar
  39. 39.
    Liu, L., Burnyeat, C.A., Lepsenyi, R.S., Nwabuko, I.O., Kelly, T.L.: Mechanism of shape evolution in Ag nanoprisms stabilized by thiol-terminated poly (ethylene glycol): an in situ kinetic study. Chem. Mater. 25, 4206–4214 (2013)CrossRefGoogle Scholar
  40. 40.
    Lohse, S.E., Burrows, N.D., Scarabelli, L., Liz-Marzán, L.M., Murphy, C.J.: Anisotropic noble metal nanocrystal growth: the role of halides. Chem. Mater. 26, 34–43 (2013)CrossRefGoogle Scholar
  41. 41.
    Chen, C., Kang, Y., Huo, Z., Zhu, Z., Huang, W., Xin, H.L., Snyder, J.D., Li, D., Herron, J.A., Mavrikakis, M.: Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014)CrossRefGoogle Scholar
  42. 42.
    Meyns, M., Iacono, F., Palencia, C., Geweke, J., Coderch, M.D., Fittschen, U.E., Gallego, J.M., Otero, R., Juárez, B.H., Klinke, C.: Shape evolution of CdSe nanoparticles controlled by halogen compounds. Chem. Mater. 26, 1813–1821 (2014)CrossRefGoogle Scholar
  43. 43.
    Sun, T., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M., Xia, Y.: Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. 53, 12320–12364 (2014)Google Scholar
  44. 44.
    Guo, S., Fidler, A.F., He, K., Su, D., Chen, G., Lin, Q., Pietryga, J.M., Klimov, V.I.: Shape-controlled narrow-gap SnTe nanostructures: from nanocubes to nanorods and nanowires. J. Am. Chem. Soc. 137, 15074–15077 (2015)CrossRefGoogle Scholar
  45. 45.
    Huang, X., Zhao, Z., Cao, L., Chen, Y., Zhu, E., Lin, Z., Li, M., Yan, A., Zettl, A., Wang, Y.M.: High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015)CrossRefGoogle Scholar
  46. 46.
    Xia, Y., Xia, X., Peng, H.C.: Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J. Am. Chem. Soc. 137, 7947–7966 (2015)CrossRefGoogle Scholar
  47. 47.
    Zhang, P., Dai, X., Zhang, X., Chen, Z., Yang, Y., Sun, H., Wang, X., Wang, H., Wang, M., Su, H.: One-pot synthesis of ternary Pt–Ni–Cu nanocrystals with high catalytic performance. Chem. Mater. 27, 6402–6410 (2015)CrossRefGoogle Scholar
  48. 48.
    Zhuang, T.T., Liu, Y., Li, Y., Sun, M., Sun, Z.J., Du, P.W., Jiang, J., Yu, S.H.: 1D colloidal hetero-nanomaterials with programmed semiconductor morphology and metal location for enhancing solar energy conversion. Small 13, 1602629 (2017)CrossRefGoogle Scholar
  49. 49.
    Yin, Y., Alivisatos, A.P.: Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437, 664–670 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations