Advertisement

Seeded Mediated Growth for Binary Chalcogenide Heteronanostructures

  • Tao-Tao Zhuang
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

A seed mediated colloidal solution-phase growth method was developed for preparing binary chalcogenide heteronanostructures (Cu2S-PbS and Ag2S-ZnS). Ionic semiconductors (Cu1.94S, Ag2S) were prepared as seeds for the reason that cations in these semiconductors behave virtually like a “fluid” in the high temperature reaction solution, endowing them to catalyze the nucleation and growth of other chalcogenide semiconductors on their surface. Unique Cu2S-PbS heteronanostructures have good photothermal conversion effect due to the synergistic effect. Using tiny Ag2S nanocrystals as catalysts can prepare ultrathin ZnS nanorods/nanowires. Chloride ions introduced in the reaction induced the controlled morphology transition from straight to kinking.

References

  1. 1.
    Zhang, J., Bang, J.H., Tang, C., Kamat, P.V.: Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance [J]. ACS Nano 4, 387–395 (2009)CrossRefGoogle Scholar
  2. 2.
    Lo, S.S., Mirkovic, T., Chuang, C.H., Burda, C., Scholes, G.D.: Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures [J]. Adv. Mater. 23, 180–197 (2011)CrossRefGoogle Scholar
  3. 3.
    Sheldon, M.T., Trudeau, P.E., Mokari, T., Wang, L.W., Alivisatos, A.P.: Enhanced semiconductor nanocrystal conductance via solution grown contacts [J]. Nano Lett. 9, 3676–3682 (2009)CrossRefGoogle Scholar
  4. 4.
    Buonsanti, R., Grillo, V., Carlino, E., Giannini, C., Gozzo, F., Garcia-Hernandez, M., Garcia, M.A., Cingolani, R., Cozzoli, P.D.: Architectural control of seeded-grown magnetic—semicondutor Iron Oxide-TiO2 nanorod heterostructures: the role of seeds in topology selection [J]. J. Am. Chem. Soc. 132, 2437–2464 (2010)CrossRefGoogle Scholar
  5. 5.
    Ouyang, L., Maher, K.N., Yu, C.L., McCarty, J., Park, H.: Catalyst-assisted solution-liquid-solid synthesis of CdS/CdSe nanorod heterostructures [J]. J. Am. Chem. Soc. 129, 133–138 (2007)CrossRefGoogle Scholar
  6. 6.
    Zeng, J., Zhu, C., Tao, J., Jin, M., Zhang, H., Li, Z.Y., Zhu, Y., Xia, Y.: Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics [J]. Angew. Chem. Int. Ed. 51, 2354–2358 (2012)CrossRefGoogle Scholar
  7. 7.
    Robinson, R.D., Sadtler, B., Demchenko, D.O., Erdonmez, C.K., Wang, L.W., Alivisatos, A.P.: Spontaneous superlattice formation in nanorods through partial cation exchange [J]. Science 317, 355–358 (2007)CrossRefGoogle Scholar
  8. 8.
    Figuerola, A., Huis, M., Zanella, M., Genovese, A., Marras, S., Falqui, A., Zandbergen, H.W., Cingolani, R., Manna, L.: Epitaxial CdSe-Au nanocrystal heterostructures by thermal annealing [J]. Nano Lett. 10, 3028–3036 (2010)CrossRefGoogle Scholar
  9. 9.
    Liu, S., Guo, X., Li, M., Zhang, W.H., Liu, X., Li, C.: Solution-phase synthesis and characterization of single-crystalline SnSe nanowires [J]. Angew. Chem. Inter. Ed. 50, 12050–12053 (2011)CrossRefGoogle Scholar
  10. 10.
    Lin, P.A., Liang, D., Gao, X.P.A., Sankaran, R.M.: Shape-controlled Au particles for InAs nanowire growth [J]. Nano Lett. 12, 315–320 (2012)CrossRefGoogle Scholar
  11. 11.
    Zhu, G., Xu, Z.: Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host [J]. J. Am. Chem. Soc. 133, 148–157 (2011)CrossRefGoogle Scholar
  12. 12.
    Shen, S., Zhang, Y., Peng, L., Du, Y., Wang, Q.: Matchstick-shaped Ag2S–ZnS heteronanostructures preserving both UV/Blue and near-infrared photoluminescence [J]. Angew. Chem. Inter. Ed. 50, 7115–7118 (2011)CrossRefGoogle Scholar
  13. 13.
    Regulacio, M.D., Ye, C., Lim, S.H., Bosman, M., Polavarapu, L., Koh, W.L., Zhang, J., Xu, Q.H., Han, M.Y.: One-pot synthesis of Cu1.94S-CdS and Cu1.94S-Zn(x)Cd(1-x)S nanodisk heterostructures [J]. J. Am. Chem. Soc. 133, 2052–2055 (2011)CrossRefGoogle Scholar
  14. 14.
    Han, S.K., Gong, M., Yao, H.B., Wang, Z.M., Yu, S.H.: One-pot controlled synthesis of Hexagonal-Prismatic Cu1. 94S-ZnS, Cu1. 94S-ZnS-Cu1. 94S, and Cu1. 94S-ZnS-Cu1. 94S-ZnS-Cu1. 94S heteronanostructures [J]. Angew. Chem. Inter. Ed. 51, 6335–6339 (2012)Google Scholar
  15. 15.
    Han, W., Yi, L., Zhao, N., Tang, A., Gao, M., Tang, Z.: Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals [J]. J. Am. Chem. Soc. 130, 13152–13161 (2008)CrossRefGoogle Scholar
  16. 16.
    Fu, H., Tsang, S.W.: Infrared colloidal lead chalcogenide nanocrystals: synthesis, properties, and photovoltaic applications [J]. Nanoscale 4, 2187–2201 (2012)CrossRefGoogle Scholar
  17. 17.
    Chakrabarti, D., Laughlin, D.: The Cu-S (copper-sulfur) system [J]. J. Phase Equilibria 4, 254–271 (1983)Google Scholar
  18. 18.
    Zhuang, Z., Peng, Q., Zhang, B., Li, Y.: Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice [J]. J. Am. Chem. Soc. 130, 10482–10483 (2008)CrossRefGoogle Scholar
  19. 19.
    Acharya, S., Sarma, D., Golan, Y., Sengupta, S., Ariga, K.: Shape-dependent confinement in ultrasmall zero-, one-, and two-dimensional PbS nanostructures [J]. J. Am. Chem. Soc. 131, 11282–11283 (2009)CrossRefGoogle Scholar
  20. 20.
    Qian, X., Liu, H., Chen, N., Zhou, H., Sun, L., Li, Y.: Architecture of CuS/PbS heterojunction semiconductor nanowire arrays for electrical switches and diodes [J]. Inorg. Chem. 51, 6771–6775 (2012)CrossRefGoogle Scholar
  21. 21.
    Zhuang, T.T., Fan, F.J., Gong, M., Yu, S.H.: Cu1.94S nanocrystal seed mediated solution-phase growth of unique Cu2S-PbS heteronanostructures [J]. Chem. Commun. 48, 9762–9764 (2012)CrossRefGoogle Scholar
  22. 22.
    Zhang, J., Tang, Y., Lee, K., Ouyang, M.: Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches [J]. Science 327, 1634–1638 (2010)CrossRefGoogle Scholar
  23. 23.
    Moon, G.D., Ko, S., Min, Y., Zeng, J., Xia, Y., Jeong, U.: Chemical transformations of nanostructured materials [J]. Nano Today 6, 186–203 (2011)CrossRefGoogle Scholar
  24. 24.
    Luther, J.M., Zheng, H., Sadtler, B., Alivisatos, A.P.: Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions [J]. J. Am. Chem. Soc. 131, 16851–16857 (2009)CrossRefGoogle Scholar
  25. 25.
    Lukashev, P., Lambrecht, W.R.L., Kotani, T., van Schilfgaarde, M.: Electronic and crystal structure of Cu{2 − x}S: full-potential electronic structure calculations [J]. Phys. Rev. B 76, 195202 (2007)CrossRefGoogle Scholar
  26. 26.
    Bae, W.K., Kwak, J., Park, J.W., Char, K., Lee, C., Lee, S.: Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient [J]. Adv. Mater. 21, 1690–1694 (2009)CrossRefGoogle Scholar
  27. 27.
    Barrelet, C.J., Wu, Y., Bell, D.C., Lieber, C.M.: Synthesis of CdS and ZnS nanowires using single-source molecular precursors [J]. J. Am. Chem. Soc. 125, 11498–11499 (2003)CrossRefGoogle Scholar
  28. 28.
    Chen, J.Y., Lim, B., Lee, E.P., Xia, Y.N.: Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications [J]. Nano Today 4, 81–95 (2009)CrossRefGoogle Scholar
  29. 29.
    Cho, S.H., Sung, J., Hwang, I., Kim, R.H., Choi, Y.S., Jo, S.S., Lee, T.W., Park, C.: High performance AC electroluminescence from colloidal quantum dot hybrids [J]. Adv. Mater. 24, 4540–4546 (2012)CrossRefGoogle Scholar
  30. 30.
    Fan, F.J., Wu, L., Gong, M., Chen, S.Y., Liu, G.Y., Yao, H.B., Liang, H.W., Wang, Y.X., Yu, S.H.: Linearly arranged polytypic CZTSSe nanocrystals [J]. Sci. Rep. 2, 952 (2012)CrossRefGoogle Scholar
  31. 31.
    Fang, X., Zhai, T., Gautam, U.K., Li, L., Wu, L., Bando, Y., Golberg, D.: ZnS nanostructures: from synthesis to applications [J]. Prog. Mater Sci. 56, 175–287 (2011)CrossRefGoogle Scholar
  32. 32.
    Fang, X.S., Bando, Y., Liao, M.Y., Gautam, U.K., Zhi, C.Y., Dierre, B., Liu, B.D., Zhai, T.Y., Sekiguchi, T., Koide, Y., Golberg, D.: Single-crystalline ZnS nanobelts as ultraviolet-light sensors [J]. Adv. Mater. 21, 2034–2039 (2009)CrossRefGoogle Scholar
  33. 33.
    Fang, X.S., Ye, C.H., Zhang, L.D., Wang, Y.H., Wu, Y.C.: Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Adv. Funct. Mater [J] 15, 63–68 (2005)CrossRefGoogle Scholar
  34. 34.
    Nag, A., Kundu, J., Hazarika, A.: Seeded-growth, nanocrystal-fusion, ion-exchange and inorganic-ligand mediated formation of semiconductor-based colloidal heterostructured nanocrystals [J]. CrystEngComm 16, 9391–9407 (2014)CrossRefGoogle Scholar
  35. 35.
    Han, S.K., Gong, M., Yao, H.B., Wang, Z.M., Yu, S.H.: One-pot controlled synthesis of hexagonal-prismatic Cu1.94S-ZnS, Cu1.94S-ZnS-Cu1.94S, and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S heteronanostructures [J]. Angew. Chem. Int. Ed. 51, 6365–6368 (2012)CrossRefGoogle Scholar
  36. 36.
    Fan, F.J., Wu, L., Gong, M., Chen, S.Y., Liu, G.Y., Yao, H.B., Liang, H.W., Wang, Y.X., Yu, S.H.: Linearly arranged polytypic CZTSSe nanocrystals [J]. Sci. Rep. 2, 952 (2012)CrossRefGoogle Scholar
  37. 37.
    Yeh, C.Y., Lu, Z.W., Froyen, S., Zunger, A.: Zinc-blende–wurtzite polytypism in semiconductors [J]. Phys. Rev. B 46, 10086–10097 (1992)CrossRefGoogle Scholar
  38. 38.
    Manna, L., Milliron, D.J., Meisel, A., Scher, E.C., Alivisatos, A.P.: Controlled growth of tetrapod-branched inorganic nanocrystals [J]. Nat. Mater. 2, 382–385 (2003)CrossRefGoogle Scholar
  39. 39.
    Zitoun, D., Pinna, N., Frolet, N., Belin, C.: Single crystal manganese oxide multipods by oriented attachment [J]. J. Am. Chem. Soc. 127, 15034–15035 (2005)CrossRefGoogle Scholar
  40. 40.
    van der Meulen, M.I., Petkov, N., Morris, M.A., Kazakova, O., Han, X., Wang, K.L., Jacob, A.P., Holmes, J.D.: Single crystalline Ge(1-x)Mn(x) nanowires as building blocks for nanoelectronics [J]. Nano Lett. 9, 50–56 (2009)CrossRefGoogle Scholar
  41. 41.
    Wang, W., Summers, C.J., Wang, Z.L.: Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays [J]. Nano Lett. 4, 423–426 (2004)CrossRefGoogle Scholar
  42. 42.
    Hamedi, M., Herland, A., Karlsson, R.H., Inganäs, O.: Electrochemical devices made from conducting nanowire networks self-assembled from amyloid fibrils and alkoxysulfonate PEDOT [J]. Nano Lett. 8, 1736–1740 (2008)CrossRefGoogle Scholar
  43. 43.
    Hyun, Y.-J., Lugstein, A., Steinmair, M., Bertagnolli, E., Pongratz, P.: Orientation specific synthesis of kinked silicon nanowires grown by the vapour-liquid-solid mechanism [J]. Nanotechnology 20, 125606 (2009)CrossRefGoogle Scholar
  44. 44.
    Li, S., Zhang, X., Zhang, L., Gao, M.: Twinning-induced kinking of Sb-doped ZnO nanowires [J]. Nanotechnology 21, 435602 (2010)CrossRefGoogle Scholar
  45. 45.
    Shen, G., Liang, B., Wang, X., Chen, P.-C., Zhou, C.: Indium Oxide nanospirals made of kinked nanowires [J]. ACS Nano 5, 2155–2161 (2011)CrossRefGoogle Scholar
  46. 46.
    Tian, B., Xie, P., Kempa, T.J., Bell, D.C., Lieber, C.M.: Single-crystalline kinked semiconductor nanowire superstructures [J]. Nat Nano 4, 824–829 (2009)CrossRefGoogle Scholar
  47. 47.
    Xu, L., Jiang, Z., Qing, Q., Mai, L., Zhang, Q., Lieber, C.M.: Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes [J]. Nano Lett. 13, 746–751 (2013)CrossRefGoogle Scholar
  48. 48.
    Jiang, Z., Qing, Q., Xie, P., Gao, R., Lieber, C.M.: Kinked p–n junction nanowire probes for high spatial resolution sensing and intracellular recording [J]. Nano Lett. 12, 1711–1716 (2012)CrossRefGoogle Scholar
  49. 49.
    Jiang, J.W., Yang, N., Wang, B.S., Rabczuk, T.: Modulation of thermal conductivity in kinked silicon nanowires: phonon interchanging and pinching effects [J]. Nano Lett. 13, 1670–1674 (2013)CrossRefGoogle Scholar
  50. 50.
    Musin, I.R., Filler, M.A.: Chemical control of semiconductor nanowire kinking and superstructure [J]. Nano Lett. 12, 3363–3368 (2012)CrossRefGoogle Scholar
  51. 51.
    Lilach, Y., Zhang, J.-P., Moskovits, M., Kolmakov, A.: Encoding morphology in oxide nanostructures during their growth [J]. Nano Lett. 5, 2019–2022 (2005)CrossRefGoogle Scholar
  52. 52.
    Yan, C., Singh, N., Lee, P.S.: Kinking-induced structural evolution of Metal Oxide nanowires into single-crystalline nanorings [J]. ACS Nano 4, 5350–5356 (2010)CrossRefGoogle Scholar
  53. 53.
    Zhang, H., Jin, M.S., Wang, J.G., Li, W.Y., Camargo, P.H.C., Kim, M.J., Yang, D.R., Xie, Z.X., Xia, Y.N.: Synthesis of Pd—Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction [J]. J. Am. Chem. Soc. 133, 6078–6089 (2011)CrossRefGoogle Scholar
  54. 54.
    Xie, S.F., Lu, N., Xie, Z.X., Wang, J.G., Kim, M.J., Xia, Y.N.: Synthesis of Pd-Rh core-frame concave nanocubes and their conversion to Rh Cubic nanoframes by selective etching of the Pd cores [J]. Angew. Chem. Int. Ed. 51, 10266–10270 (2012)CrossRefGoogle Scholar
  55. 55.
    Yin, J., Wang, J.H., Li, M.R., Jin, C.Z., Zhang, T.: Iodine Ions mediated formation of monomorphic single-crystalline platinum nanoflowers [J]. Chem. Mater. 24, 2645–2654 (2012)CrossRefGoogle Scholar
  56. 56.
    Langille, M.R., Personick, M.L., Zhang, J., Mirkin, C.A.: Defining rules for the shape evolution of gold nanoparticles [J]. J. Am. Chem. Soc. 134, 14542–14554 (2012)CrossRefGoogle Scholar
  57. 57.
    Lim, J., Bae, W.K., Park, K.U., zur Borg, L., Zentel, R., Lee, S., Char, K.: Controlled synthesis of CdSe tetrapods with high morphological uniformity by the persistent kinetic growth and the halide-mediated phase transformation [J]. Chem. Mater. 25, 1443–1449 (2013)CrossRefGoogle Scholar
  58. 58.
    Kim, M.R., Miszta, K., Povia, M., Brescia, R., Christodoulou, S., Prato, M., Marras, S., Manna, L.: Influence of Chloride Ions on the synthesis of colloidal branched CdSe/CdS nanocrystals by seeded growth [J]. ACS Nano 6, 11088–11096 (2012)CrossRefGoogle Scholar
  59. 59.
    Lim, S.J., Kim, W., Jung, S., Seo, J., Shin, S.K.: Anisotropic etching of semiconductor nanocrystals [J]. Chem. Mater. 23, 5029–5036 (2011)CrossRefGoogle Scholar
  60. 60.
    Lim, S.J., Kim, W., Shin, S.K.: Surface-dependent, ligand-mediated photochemical etching of CdSe nanoplatelets [J]. J. Am. Chem. Soc. 134, 7576–7579 (2012)CrossRefGoogle Scholar
  61. 61.
    Saruyama, M., Kanehara, M., Teranishi, T.: Drastic structural transformation of cadmium chalcogenide nanoparticles using chloride ions and surfactants [J]. J. Am. Chem. Soc. 132, 3280–3282 (2010)CrossRefGoogle Scholar
  62. 62.
    Fang, X., Zhai, T., Gautam, U.K., Li, L., Wu, L., Bando, Y., Golberg, D.: ZnS nanostructures: from synthesis to applications [J]. Prog. Mater Sci. 56, 175–287 (2011)CrossRefGoogle Scholar
  63. 63.
    Zhai, T., Li, L., Ma, Y., Liao, M., Wang, X., Fang, X., Yao, J., Bando, Y., Golberg, D.: One-dimensional inorganic nanostructures: synthesis, field-emission and photodetection [J]. Chem. Soc. Rev. 40, 2986–3004 (2011)CrossRefGoogle Scholar
  64. 64.
    Li, H., Wang, X., Xu, J., Zhang, Q., Bando, Y., Golberg, D., Ma, Y., Zhai, T.: One-dimensional CdS nanostructures: a promising candidate for optoelectronics [J]. Adv. Mater. 25, 3017–3037 (2013)CrossRefGoogle Scholar
  65. 65.
    Tran, T.K., Park, W., Tong, W., Kyi, M.M., Wagner, B.K., Summers, C.J.: Photoluminescence properties of ZnS epilayers [J]. J. Appl. Phys. 81, 2803–2809 (1997)CrossRefGoogle Scholar
  66. 66.
    Ong, H.C., Chang, R.P.H.: Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry [J]. Appl. Phys. Lett. 79, 3612–3614 (2001)CrossRefGoogle Scholar
  67. 67.
    Bae, W.K., Kwak, J., Park, J.W., Char, K., Lee, C., Lee, S.: Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient [J]. Adv. Mater. 21, 1690–1694 (2009)CrossRefGoogle Scholar
  68. 68.
    Cho, S.H., Sung, J., Hwang, I., Kim, R.H., Choi, Y.S., Jo, S.S., Lee, T.W., Park, C.: High performance AC electroluminescence from colloidal quantum dot hybrids [J]. Adv. Mater. 24, 4540–4546 (2012)CrossRefGoogle Scholar
  69. 69.
    Koutsogeorgis, D.C., Mastio, E.A., Cranton, W.M., Thomas, C.B.: Pulsed KrF laser annealing of ZnS: Mn laterally emitting thin film electroluminescent displays [J]. Thin Solid Films 383, 31–33 (2001)CrossRefGoogle Scholar
  70. 70.
    Yan, H., He, R., Johnson, J., Law, M., Saykally, R.J., Yang, P.: Dendritic nanowire ultraviolet laser array [J]. J. Am. Chem. Soc. 125, 4728–4729 (2003)CrossRefGoogle Scholar
  71. 71.
    Fang, X.S., Bando, Y., Liao, M.Y., Gautam, U.K., Zhi, C.Y., Dierre, B., Liu, B.D., Zhai, T.Y., Sekiguchi, T., Koide, Y., Golberg, D.: Single-crystalline ZnS nanobelts as ultraviolet-light sensors [J]. Adv. Mater. 21, 2034–2039 (2009)CrossRefGoogle Scholar
  72. 72.
    Zhu, G.X., Zhang, S.G., Xu, Z., Ma, J., Shen, X.P.: Ultrathin ZnS single crystal nanowires: controlled synthesis and room-temperature ferromagnetism properties [J]. J. Am. Chem. Soc. 133, 15605–15612 (2011)CrossRefGoogle Scholar
  73. 73.
    Zhang, Y.J., Xu, H.R., Wang, Q.B.: Ultrathin single crystal ZnS nanowires [J]. Chem. Commun. 46, 8941–8943 (2010)CrossRefGoogle Scholar
  74. 74.
    Barrelet, C.J., Wu, Y., Bell, D.C., Lieber, C.M.: Synthesis of CdS and ZnS nanowires using single-source molecular precursors [J]. J. Am. Chem. Soc. 125, 11498–11499 (2003)CrossRefGoogle Scholar
  75. 75.
    Fang, X.S., Ye, C.H., Zhang, L.D., Wang, Y.H., Wu, Y.C.: Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders [J]. Adv. Funct. Mater. 15, 63–68 (2005)CrossRefGoogle Scholar
  76. 76.
    Zhu, G.X., Xu, Z.: Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host [J]. J. Am. Chem. Soc. 133, 148–157 (2010)CrossRefGoogle Scholar
  77. 77.
    Shen, S.L., Zhang, Y.J., Peng, L., Du, Y.P., Wang, Q.B.: Matchstick-shaped Ag2S–ZnS heteronanostructures preserving both UV/Blue and near-infrared photoluminescence [J]. Angew. Chem. Int. Ed. 50, 7115–7118 (2011)CrossRefGoogle Scholar
  78. 78.
    Zhuang, T.T., Yu, P., Fan, F.J., Wu, L., Liu, X.J., Yu, S.H.: Controlled synthesis of kinked ultrathin ZnS nanorods/nanowires triggered by Chloride Ions: a case study [J]. Small 10, 1394–1402 (2014)CrossRefGoogle Scholar
  79. 79.
    Sowers, K.L., Swartz, B., Krauss, T.D.: Chemical mechanisms of semiconductor nanocrystal synthesis [J]. Chem. Mater. 25, 1351–1362 (2013)CrossRefGoogle Scholar
  80. 80.
    Zhu, G., Xu, Z.: Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host [J]. J. Am. Chem. Soc. 133, 148–157 (2011)CrossRefGoogle Scholar
  81. 81.
    Huang, F., Banfield, J.F.: Size-dependent phase transformation kinetics in nanocrystalline ZnS [J]. J. Am. Chem. Soc. 127, 4523–4529 (2005)CrossRefGoogle Scholar
  82. 82.
    Wageh, S., Ling, Z.S., Xu-Rong, X.: Growth and optical properties of colloidal ZnS nanoparticles [J]. J. Cryst. Growth 255, 332–337 (2003)CrossRefGoogle Scholar
  83. 83.
    Yu, J.H., Joo, J., Park, H.M., Baik, S.-I., Kim, Y.W., Kim, S.C., Hyeon, T.: Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism [J]. J. Am. Chem. Soc. 127, 5662–5670 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations