• Tao-Tao Zhuang
Part of the Springer Theses book series (Springer Theses)


One-dimensional hetero-nanostructures are attracting significant attention, due to the unique physical and chemical properties decided by their energy band gaps. Design rational synthesis approaches offering high degree of control over compositon, size and morphology of novel heteronanostructures and thus achieving high conversion efficiency and long-term performance stability for applications.


  1. 1.
    Smith, A.M., Nie, S.: Semiconductor nanocrystals: structure, properties, and band gap engineering [J]. Acc. Chem. Res. 43, 190–200 (2009)CrossRefGoogle Scholar
  2. 2.
    Bawendi, M.G., Steigerwald, M.L., Brus, L.E.: The quantum mechanics of larger semiconductor clusters (“quantum dots”) [J]. Annu. Rev. Phys. Chem. 41, 477–496 (1990)CrossRefGoogle Scholar
  3. 3.
    Alivisatos, A.P.: Perspectives on the physical chemistry of semiconductor nanocrystals [J]. J. Phys. Chem. 100, 13226–13239 (1996)CrossRefGoogle Scholar
  4. 4.
    Brus, L.E.: Electron–electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state [J]. J. Chem. Phys. 80, 4403–4409 (1984)CrossRefGoogle Scholar
  5. 5.
    Min, Y., Kwak, J., Soon, A., Jeong, U.: Nonstoichiometric nucleation and growth of multicomponent nanocrystals in solution [J]. Acc. Chem. Res. 47, 2887–2893 (2014)CrossRefGoogle Scholar
  6. 6.
    Oh, N., Nam, S., Zhai, Y., Deshpande, K., Trefonas, P., Shim, M.: Double-heterojunction nanorods [J]. Nat. Commun. 5, 3642 (2014)Google Scholar
  7. 7.
    Sang, W., Zheng, T., Wang, Y., Li, X., Zhao, X., Zeng, J., Hou, J.G.: One-step synthesis of hybrid nanocrystals with rational tuning of the morphology [J]. Nano Lett. 14, 6666–6671 (2014)CrossRefGoogle Scholar
  8. 8.
    Simon, T., Bouchonville, N., Berr, M.J., Vaneski, A., Adrovic, A., Volbers, D., Wyrwich, R., Doblinger, M., Susha, A.S., Rogach, A.L., Jackel, F., Stolarczyk, J.K., Feldmann, J.: Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods [J]. Nat. Mater. 13, 1013–1018 (2014)CrossRefGoogle Scholar
  9. 9.
    Singh, G., Chan, H., Baskin, A., Gelman, E., Repnin, N., Král, P., Klajn, R.: Self-assembly of magnetite nanocubes into helical superstructures [J]. Science 345, 1149–1153 (2014)CrossRefGoogle Scholar
  10. 10.
    Yu, X., Shavel, A., An, X., Luo, Z., Ibáñez, M., Cabot, A.: Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation [J]. J. Am. Chem. Soc. 136, 9236–9239 (2014)CrossRefGoogle Scholar
  11. 11.
    Yu, Y., Zhang, Q., Yao, Q., Xie, J., Lee, J.Y.: Architectural design of heterogeneous metallic nanocrystals—principles and processes [J]. Acc. Chem. Res. 47, 3530–3540 (2014)CrossRefGoogle Scholar
  12. 12.
    Zhuang, Z., Sheng, W., Yan, Y.: Synthesis of Monodispere Au@Co3O4 Core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction [J]. Adv. Mater. 26(23), 3950–3955 (2014)Google Scholar
  13. 13.
    Gao, M.-R., Liang, J.-X., Zheng, Y.-R., Xu, Y.-F., Jiang, J., Gao, Q., Li, J., Yu, S.-H.: An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation [J]. Nat. Commun. 6, 5892 (2015)Google Scholar
  14. 14.
    Lhuillier, E., Pedetti, S., Ithurria, S., Nadal, B., Heuclin, H., Dubertret, B.: Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications [J]. Acc. Chem. Res. 48, 22–30 (2015)CrossRefGoogle Scholar
  15. 15.
    Rowland, C.E., Fedin, I., Zhang, H., Gray, S.K., Govorov, A.O., Talapin, D.V., Schaller, R.D.: Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids [J]. Nat. Mater. Adv. Online Publ. (2015)Google Scholar
  16. 16.
    Burda, C., Chen, X., Narayanan, R., El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes [J]. Chem. Rev. 105, 1025–1102 (2005)CrossRefGoogle Scholar
  17. 17.
    Talapin, D.V., Lee, J.-S., Kovalenko, M.V., Shevchenko, E.V.: Prospects of colloidal nanocrystals for electronic and optoelectronic applications [J]. Chem. Rev. 110, 389–458 (2009)CrossRefGoogle Scholar
  18. 18.
    Kubacka, A., Fernández-García, M., Colón, G.: Advanced nanoarchitectures for solar photocatalytic applications [J]. Chem. Rev. 112, 1555–1614 (2011)CrossRefGoogle Scholar
  19. 19.
    de Mello Donegá, C.: Synthesis and properties of colloidal heteronanocrystals [J]. Chem. Soc. Rev. 40, 1512–1546 (2011)CrossRefGoogle Scholar
  20. 20.
    Sitt, A., Hadar, I., Banin, U.: Band-gap engineering, optoelectronic properties and applications of colloidal heterostructured semiconductor nanorods [J]. Nano Today 8, 494–513 (2013)CrossRefGoogle Scholar
  21. 21.
    Lv, R., Robinson, J.A., Schaak, R.E., Sun, D., Sun, Y., Mallouk, T.E., Terrones, M.: Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets [J]. Acc. Chem. Res. 48, 56–64 (2015)CrossRefGoogle Scholar
  22. 22.
    Chhowalla, M., Shin, H.S., Eda, G., Li, L.-J., Loh, K.P., Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets [J]. Nat Chem. 5, 263–275 (2013)CrossRefGoogle Scholar
  23. 23.
    Roduner, E.: Size matters: why nanomaterials are different [J]. Chem. Soc. Rev. 35, 583–592 (2006)CrossRefGoogle Scholar
  24. 24.
    Menagen, G., Macdonald, J.E., Shemesh, Y., Popov, I., Banin, U.: Au growth on semiconductor nanorods: photoinduced versus thermal growth mechanisms [J]. J. Am. Chem. Soc. 131, 17406–17411 (2009)CrossRefGoogle Scholar
  25. 25.
    Luther, J.M., Zheng, H., Sadtler, B., Alivisatos, A.P.: Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions [J]. J. Am. Chem. Soc. 131, 16851–16857 (2009)CrossRefGoogle Scholar
  26. 26.
    Robinson, R.D., Sadtler, B., Demchenko, D.O., Erdonmez, C.K., Wang, L.-W., Alivisatos, A.P.: Spontaneous superlattice formation in nanorods through partial cation exchange [J]. Science 317, 355–358 (2007)CrossRefGoogle Scholar
  27. 27.
    Beberwyck, B.J., Surendranath, Y., Alivisatos, A.P.: Cation exchange: a versatile tool for nanomaterials synthesis [J]. J. Phy. Chem. C 117, 19759–19770 (2013)CrossRefGoogle Scholar
  28. 28.
    Casavola, M., Buonsanti, R., Caputo, G., Cozzoli, P.D.: Colloidal strategies for preparing oxide-based hybrid nanocrystals [J]. Eur. J. Inorg. Chem. 2008, 837–854 (2008)CrossRefGoogle Scholar
  29. 29.
    Costi, R., Saunders, A.E., Banin, U.: Colloidal hybrid nanostructures: a new type of functional materials. Angew. Chem. Int. Ed. 49, 4878–4897 (2010)CrossRefGoogle Scholar
  30. 30.
    Cozzoli, P.D., Pellegrino, T., Manna, L.: Synthesis, properties and perspectives of hybrid nanocrystal structures [J]. Chem. Soc. Rev. 35, 1195–1208 (2006)CrossRefGoogle Scholar
  31. 31.
    Reiss, P., Protiere, M., Li, L.: Core/shell semiconductor nanocrystals [J]. Small 5, 154–168 (2009)Google Scholar
  32. 32.
    Costi, R., Saunders, A.E., Banin, U.: Colloidal hybrid nanostructures: a new type of functional materials [J]. Angew. Chem. Int. Ed. 49, 4878–4897 (2010)CrossRefGoogle Scholar
  33. 33.
    Lee, D.C., Robel, I., Pietryga, J.M., Klimov, V.I.: Infrared-active heterostructured nanocrystals with ultralong carrier lifetimes [J]. J. Am. Chem. Soc. 132, 9960–9962 (2010)CrossRefGoogle Scholar
  34. 34.
    Xie, R., Kolb, U., Li, J., Basché, T., Mews, A.: Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0. 5Cd0. 5S/ZnS multishell nanocrystals [J]. J. Am. Chem. Soc. 127, 7480–7488 (2005)CrossRefGoogle Scholar
  35. 35.
    Zeng, J., Huang, J., Liu, C., Wu, C.H., Lin, Y., Wang, X., Zhang, S., Hou, J., Xia, Y.: Gold-based hybrid nanocrystals through heterogeneous nucleation and growth [J]. Adv. Mater. 22, 1936–1940 (2010)CrossRefGoogle Scholar
  36. 36.
    Selvan, S., Patra, P.K., Ang, C.Y., Ying, J.Y.: Synthesis of Silica-Coated semiconductor and magnetic quantum dots and their use in the imaging of live cells [J]. Angew. Chem. Int. Ed. 46, 2448–2452 (2007)CrossRefGoogle Scholar
  37. 37.
    Yan, C., Dadvand, A., Rosei, F., Perepichka, D.F.: Near-IR photoresponse in new up-converting CdSe/NaYF4: Yb, Er nanoheterostructures [J]. J. Am. Chem. Soc. 132, 8868–8869 (2010)CrossRefGoogle Scholar
  38. 38.
    Zanella, M., Falqui, A., Kudera, S., Manna, L., Casula, M.F., Parak, W.J.: Growth of colloidal nanoparticles of group II–VI and IV–VI semiconductors on top of magnetic iron–platinum nanocrystals [J]. J. Mater. Chem. 18, 4311–4317 (2008)CrossRefGoogle Scholar
  39. 39.
    Chin, P.T., Hikmet, R.A., Meskers, S.C., Janssen, R.A.: Energy transfer and polarized emission in cadmium selenide nanocrystal solids with mixed dimensionality [J]. Adv. Funct. Mater. 17, 3829–3835 (2007)CrossRefGoogle Scholar
  40. 40.
    Deka, S., Quarta, A., Lupo, M.G., Falqui, A., Boninelli, S., Giannini, C., Morello, G., De Giorgi, M., Lanzani, G., Spinella, C.: CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes [J]. J. Am. Chem. Soc. 131, 2948–2958 (2009)CrossRefGoogle Scholar
  41. 41.
    Talapin, D.V., Koeppe, R., Götzinger, S., Kornowski, A., Lupton, J.M., Rogach, A.L., Benson, O., Feldmann, J., Weller, H.: Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality [J]. Nano Lett. 3, 1677–1681 (2003)CrossRefGoogle Scholar
  42. 42.
    Halpert, J.E., Porter, V.J., Zimmer, J.P., Bawendi, M.G.: Synthesis of CdSe/CdTe nanobarbells [J]. J. Am. Chem. Soc. 128, 12590–12591 (2006)CrossRefGoogle Scholar
  43. 43.
    Kumar, S., Jones, M., Lo, S.S., Scholes, G.D.: Nanorod heterostructures showing photoinduced charge separation [J]. Small 3, 1633–1639 (2007)CrossRefGoogle Scholar
  44. 44.
    Milliron, D.J., Hughes, S.M., Cui, Y., Manna, L., Li, J., Wang, L.-W., Alivisatos, A.P.: Colloidal nanocrystal heterostructures with linear and branched topology [J]. Nature 430, 190–195 (2004)CrossRefGoogle Scholar
  45. 45.
    Kudera, S., Carbone, L., Casula, M.F., Cingolani, R., Falqui, A., Snoeck, E., Parak, W.J., Manna, L.: Selective growth of PbSe on one or both tips of colloidal semiconductor nanorods [J]. Nano Lett. 5, 445–449 (2005)CrossRefGoogle Scholar
  46. 46.
    de Mello Donega, C., Koole, R.: Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots [J]. J. Phys. Chem. C 113, 6511–6520 (2009)CrossRefGoogle Scholar
  47. 47.
    Li, H., Brescia, R., Krahne, R., Bertoni, G., Alcocer, M.J., D’Andrea, C., Scotognella, F., Tassone, F., Zanella, M., De Giorgi, M.: Blue-UV-emitting ZnSe (dot)/ZnS (rod) core/shell nanocrystals prepared from CdSe/CdS nanocrystals by sequential cation exchange [J]. ACS Nano 6, 1637–1647 (2012)CrossRefGoogle Scholar
  48. 48.
    Dorfs, D., Salant, A., Popov, I., Banin, U.: ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system [J]. Small 4, 1319–1323 (2008)CrossRefGoogle Scholar
  49. 49.
    Xing, G., Chakrabortty, S., Chou, K.L., Mishra, N., Huan, C.H.A., Chan, Y., Sum, T.C.: Enhanced tunability of the multiphoton absorption cross-section in seeded CdSe/CdS nanorod heterostructures [J]. Appl. Phys. Lett. 97, 061112 (2010)CrossRefGoogle Scholar
  50. 50.
    Xing, G., Chakrabortty, S., Ngiam, S.W., Chan, Y., Sum, T.C.: Three-photon absorption in seeded CdSe/CdS nanorod heterostructures [J]. J. Phy. Chem. C 115, 17711–17716 (2011)CrossRefGoogle Scholar
  51. 51.
    She, C., Demortiere, A., Shevchenko, E.V., Pelton, M.: Using shape to control photoluminescence from cdse/cds core/shell nanorods [J]. J. Phys. Chem. Lett. 2, 1469–1475 (2011)CrossRefGoogle Scholar
  52. 52.
    Smith, A.M., Mohs, A.M., Nie, S.: Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain [J]. Nat. Nanotechnol. 4, 56–63 (2009)CrossRefGoogle Scholar
  53. 53.
    Van de Walle, C.G., Neugebauer, J.: Universal alignment of hydrogen levels in semiconductors, insulators and solutions [J]. Nature 423, 626–628 (2003)CrossRefGoogle Scholar
  54. 54.
    Luo, Y., Wang, L.-W.: Electronic structures of the CdSe/CdS core − shell nanorods [J]. ACS Nano 4, 91–98 (2009)CrossRefGoogle Scholar
  55. 55.
    Müller, J., Lupton, J., Lagoudakis, P., Schindler, F., Koeppe, R., Rogach, A., Feldmann, J., Talapin, D., Weller, H.: Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement [J]. Nano Lett. 5, 2044–2049 (2005)CrossRefGoogle Scholar
  56. 56.
    Müller, J., Lupton, J., Rogach, A., Feldmann, J., Talapin, D., Weller, H.: Monitoring surface charge migration in the spectral dynamics of single Cd Se∕ Cd S nanodot/nanorod heterostructures [J]. Phys. Rev. B 72, 205339 (2005)CrossRefGoogle Scholar
  57. 57.
    Lupo, M.G., Della Sala, F., Carbone, L., Zavelani-Rossi, M., Fiore, A., Lüer, L., Polli, D., Cingolani, R., Manna, L., Lanzani, G.: Ultrafast electron − hole dynamics in Core/Shell CdSe/CdS Dot/Rod nanocrystals [J]. Nano Lett. 8, 4582–4587 (2008)CrossRefGoogle Scholar
  58. 58.
    Sitt, A., Hadar, I., Banin, U.: Band-gap engineering, optoelectronic properties and applications of colloidal heterostructured semiconductor nanorods [J]. Nano Today 8, 494–513 (2013)CrossRefGoogle Scholar
  59. 59.
    Hikmet, R.A., Chin, P.T., Talapin, D.V., Weller, H.: Polarized-light-emitting quantum-rod diodes [J]. Adv. Mater. 17, 1436–1439 (2005)CrossRefGoogle Scholar
  60. 60.
    Rizzo, A., Nobile, C., Mazzeo, M., Giorgi, M.D., Fiore, A., Carbone, L., Cingolani, R., Manna, L., Gigli, G.: Polarized light emitting diode by long-range nanorod self-assembling on a water surface [J]. ACS Nano 3, 1506–1512 (2009)CrossRefGoogle Scholar
  61. 61.
    Kazes, M., Lewis, D.Y., Ebenstein, Y., Mokari, T., Banin, U.: Lasing from semiconductor quantum rods in a cylindrical microcavity [J]. Adv. Mater. 14, 317–321 (2002)CrossRefGoogle Scholar
  62. 62.
    Zavelani-Rossi, M., Krahne, R., Della Valle, G., Longhi, S., Franchini, I.R., Girardo, S., Scotognella, F., Pisignano, D., Manna, L., Lanzani, G.: Self-assembled CdSe/CdS nanorod micro-lasers fabricated from solution by capillary jet deposition [J]. Laser Photonics Rev. 6, 678–683 (2012)CrossRefGoogle Scholar
  63. 63.
    Zavelani-Rossi, M., Lupo, M.G., Krahne, R., Manna, L., Lanzani, G.: Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods [J]. Nanoscale 2, 931–935 (2010)CrossRefGoogle Scholar
  64. 64.
    Xing, G., Liao, Y., Wu, X., Chakrabortty, S., Liu, X., Yeow, E.K., Chan, Y., Sum, T.C.: Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures [J]. ACS Nano 6, 10835–10844 (2012)CrossRefGoogle Scholar
  65. 65.
    Krahne, R., Zavelani-Rossi, M., Lupo, M.G., Manna, L., Lanzani, G.: Amplified spontaneous emission from core and shell transitions in CdSe/CdS nanorods fabricated by seeded growth [J]. Appl. Phys. Lett. 98, 063105 (2011)CrossRefGoogle Scholar
  66. 66.
    Rothenberg, E., Kazes, M., Shaviv, E., Banin, U.: Electric field induced switching of the fluorescence of single semiconductor quantum rods [J]. Nano Lett. 5, 1581–1586 (2005)CrossRefGoogle Scholar
  67. 67.
    Becker, K., Lupton, J.M., Müller, J., Rogach, A.L., Talapin, D.V., Weller, H., Feldmann, J.: Electrical control of Förster energy transfer [J]. Nat. Mater. 5, 777–781 (2006)CrossRefGoogle Scholar
  68. 68.
    Kraus, R., Lagoudakis, P., Rogach, A., Talapin, D., Weller, H., Lupton, J., Feldmann, J.: Room-temperature exciton storage in elongated semiconductor nanocrystals [J]. Phys. Rev. Lett. 98, 017401 (2007)CrossRefGoogle Scholar
  69. 69.
    Pühringer, H., Roither, J., Kovalenko, M., Eibelhuber, M., Schwarzl, T., Talapin, D., Heiss, W.: Enhanced color conversion from colloidal CdSe/CdS dot/rods by vertical microcavities [J]. Appl. Phys. Lett. 97, 111115 (2010)CrossRefGoogle Scholar
  70. 70.
    Petti, L., Rippa, M., Zhou, J., Manna, L., Zanella, M., Mormile, P.: Novel hybrid organic/inorganic 2D quasiperiodic PC: from diffraction pattern to vertical light extraction [J], Nanoscale Res. Lett. 6, 1–6 (2011)Google Scholar
  71. 71.
    Petti, L., Rippa, M., Zhou, J., Manna, L., Mormile, P.: A novel hybrid organic/inorganic photonic crystal slab showing a resonance action at the band edge [J]. Nanotechnology 22, 285307 (2011)CrossRefGoogle Scholar
  72. 72.
    Banin, U., Ben-Shahar, Y., Vinokurov, K.: Hybrid semiconductor-metal nanoparticles: from architecture to function [J]. Chem, Mater (2013)Google Scholar
  73. 73.
    Saunders, A.E., Popov, I., Banin, U.: Synthesis of hybrid CdS-Au colloidal nanostructures [J]. J. Phys. Chem. B 110, 25421–25429 (2006)CrossRefGoogle Scholar
  74. 74.
    Zhang, W., Govorov, A.O., Bryant, G.W.: Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect [J]. Phys. Rev. Lett. 97, 146804 (2006)CrossRefGoogle Scholar
  75. 75.
    Sun, Z., Yang, Z., Zhou, J., Yeung, M.H., Ni, W., Wu, H., Wang, J.: A general approach to the synthesis of gold–metal sulfide core–shell and heterostructures [J]. Angew. Chem. Int. Ed. 48, 2881–2885 (2009)CrossRefGoogle Scholar
  76. 76.
    Shaviv, E., Schubert, O., Alves-Santos, M., Goldoni, G., Di Felice, R., Vallee, F., Del Fatti, N., Banin, U., Sönnichsen, C.: Absorption properties of metal–semiconductor hybrid nanoparticles [J]. ACS Nano 5, 4712–4719 (2011)CrossRefGoogle Scholar
  77. 77.
    Sönnichsen, C., Geier, S., Hecker, N., Von Plessen, G., Feldmann, J., Ditlbacher, H., Lamprecht, B., Krenn, J., Aussenegg, F., Chan, V.Z.: Spectroscopy of single metallic nanoparticles using total internal reflection microscopy [J]. Appl. Phys. Lett. 77, 2949–2951 (2000)CrossRefGoogle Scholar
  78. 78.
    Templeton, A.C., Pietron, J.J., Murray, R.W., Mulvaney, P.: Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters [J]. J. Phys. Chem. B 104, 564–570 (2000)CrossRefGoogle Scholar
  79. 79.
    Zhao, N., Vickery, J., Guerin, G., Park, J.I., Winnik, M.A., Kumacheva, E.: Self-assembly of single-tip metal-semiconductor nanorods in selective solvents [J]. Angew. Chem. Int. Ed. 50, 4606–4610 (2011)CrossRefGoogle Scholar
  80. 80.
    Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment [J]. J. Phys. Chem. B 107, 668–677 (2003)CrossRefGoogle Scholar
  81. 81.
    Jain, P.K., Ghosh, D., Baer, R., Rabani, E., Alivisatos, A.P.: Near-field manipulation of spectroscopic selection rules on the nanoscale [J]. Proc. Natl. Acad. Sci. 109, 8016–8019 (2012)CrossRefGoogle Scholar
  82. 82.
    Li, M., Yu, X.F., Liang, S., Peng, X.N., Yang, Z.J., Wang, Y.L., Wang, Q.Q.: Synthesis of Au–CdS core-shell hetero-nanorods with efficient exciton-plasmon interactions [J]. Adv. Funct. Mater. 21, 1788–1794 (2011)CrossRefGoogle Scholar
  83. 83.
    Lee, J., Govorov, A.O., Dulka, J., Kotov, N.A.: Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon-exciton interactions, luminescence enhancement, and collective effects [J]. Nano Lett. 4, 2323–2330 (2004)CrossRefGoogle Scholar
  84. 84.
    Viste, P., Plain, J., Jaffiol, R., Vial, A., Adam, P.M., Royer, P.: Enhancement and quenching regimes in metal—semiconductor hybrid optical nanosources [J]. ACS Nano 4, 759–764 (2010)CrossRefGoogle Scholar
  85. 85.
    Gueroui, Z., Libchaber, A.: Single-molecule measurements of gold-quenched quantum dots [J]. Phys. Rev. Lett. 93, 166108 (2004)CrossRefGoogle Scholar
  86. 86.
    Wang, Y., Yang, T., Tuominen, M.T., Achermann, M.: Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures [J]. Phys. Rev. Lett. 102, 163001 (2009)CrossRefGoogle Scholar
  87. 87.
    Chen, Y., Munechika, K., Ginger, D.S.: Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles [J]. Nano Lett. 7, 690–696 (2007)CrossRefGoogle Scholar
  88. 88.
    Munechika, K., Chen, Y., Tillack, A.F., Kulkarni, A.P., Plante, I.J.-L., Munro, A.M., Ginger, D.S.: Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms [J]. Nano Lett. 10, 2598–2603 (2010)CrossRefGoogle Scholar
  89. 89.
    Akimov, A., Mukherjee, A., Yu, C., Chang, D., Zibrov, A., Hemmer, P., Park, H., Lukin, M.: Generation of single optical plasmons in metallic nanowires coupled to quantum dots [J]. Nature 450, 402–406 (2007)CrossRefGoogle Scholar
  90. 90.
    Chen, S., Ingram, R.S., Hostetler, M.J., Pietron, J.J., Murray, R.W., Schaaff, T.G., Khoury, J.T., Alvarez, M.M., Whetten, R.L.: Gold nanoelectrodes of varied size: transition to molecule-like charging [J]. Science 280, 2098–2101 (1998)CrossRefGoogle Scholar
  91. 91.
    Mongin, D., Shaviv, E., Maioli, P., Crut, A., Banin, U., Del Fatti, N., Vallée, F.: Ultrafast photoinduced charge separation in metal–semiconductor nanohybrids [J]. ACS Nano 6, 7034–7043 (2012)CrossRefGoogle Scholar
  92. 92.
    Landman, U., Barnett, R.N., Scherbakov, A.G., Avouris, P.: Metal-semiconductor nanocontacts: Silicon nanowires [J]. Phys. Rev. Lett. 85, 1958 (2000)CrossRefGoogle Scholar
  93. 93.
    Wu, K., Zhu, H., Liu, Z., Rodríguez-Córdoba, W., Lian, T.: Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS–Pt nanorod heterostructures [J]. J. Am. Chem. Soc. 134, 10337–10340 (2012)CrossRefGoogle Scholar
  94. 94.
    O’Connor, T., Panov, M.S., Mereshchenko, A., Tarnovsky, A.N., Lorek, R., Perera, D., Diederich, G., Lambright, S., Moroz, P., Zamkov, M.: The effect of the charge-separating interface on exciton dynamics in photocatalytic colloidal heteronanocrystals [J]. ACS Nano 6, 8156–8165 (2012)CrossRefGoogle Scholar
  95. 95.
    Berr, M.J., Vaneski, A., Mauser, C., Fischbach, S., Susha, A.S., Rogach, A.L., Jäckel, F., Feldmann, J.: Delayed photoelectron transfer in Pt-Decorated CdS Nanorods under hydrogen generation conditions [J]. Small 8, 291–297 (2012)CrossRefGoogle Scholar
  96. 96.
    Mills, A., Davies, R.H., Worsley, D.: Water purification by semiconductor photocatalysis [J]. Chem. Soc. Rev. 22, 417–425 (1993)CrossRefGoogle Scholar
  97. 97.
    Grätzel, M.: Photoelectrochemical cells [J]. Nature 414, 338–344 (2001)CrossRefGoogle Scholar
  98. 98.
    Kudo, A., Miseki, Y.: Heterogeneous photocatalyst materials for water splitting [J]. Chem. Soc. Rev. 38, 253–278 (2009)CrossRefGoogle Scholar
  99. 99.
    Xia, Y., Xiong, Y., Lim, B., Skrabalak, S.E.: Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? [J]. Angew. Chem. Int. Ed. 48, 60–103 (2009)CrossRefGoogle Scholar
  100. 100.
    Amirav, L., Alivisatos, A.P.: Photocatalytic hydrogen production with tunable nanorod heterostructures [J]. J. Phys. Chem. Lett. 1, 1051–1054 (2010)CrossRefGoogle Scholar
  101. 101.
    Subramanian, V., Wolf, E.E., Kamat, P.V.: Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration [J]. J. Am. Chem. Soc. 126, 4943–4950 (2004)CrossRefGoogle Scholar
  102. 102.
    Murdoch, M., Waterhouse, G., Nadeem, M., Metson, J., Keane, M., Howe, R., Llorca, J., Idriss, H.: The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles [J]. Nat. Chem. 3, 489–492 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations