A Simplified Ultrasonic Stripping-Chemical Reduction Method for Preparation of Graphene

  • Lina Shi
  • Rong Wang
  • Deguo Zhou
  • Yan Liu
  • Yanzong Zhang
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


Graphene has been widely used in many fields due to its unique excellent mechanical, optical, thermal and electrical properties. A simple approach for reducing graphene oxide (GO) with Tea polyphenols (TP) (TRG) was developed by ultrasonic stripping-chemical reduction method. The reduction products of TRG were obtained, and Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy and X-ray-diffraction were introduced to prove the elimination of oxygen-containing groups from GO. It was found that when the weight of TP was 0.225 g, the reduction degree of GO was the highest. Besides, the thermal gravimetric analysis results showed that there was a close relationship between the reduction degree of GO and thermal stability of TRG.


Graphene oxide Tea polyphenols Ultrasonic stripping Thermal stability Reduction degree 



This work was supported by the Science and Technology Department of Sichuan Province (2017JZ0021, 2017SZ0039) and the Education Department of Sichuan Province (17ZA0298).


  1. 1.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  2. 2.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science. 306, 666–669 (2004)CrossRefGoogle Scholar
  3. 3.
    T. Yokoyama, J. Linder, Anomalous magnetic transport in ferromagnetic graphene junctions. Phys. Rev. B. 83, 3002–3005 (2011)Google Scholar
  4. 4.
    E. Cartlidge, Graphene superconductivity seen. Phys. World 28, 6–7 (2015)Google Scholar
  5. 5.
    C. Cao, M. Long, X. Mao, Giant magnetoresistance effect, rectifying performance and spin filters in graphene-based heterostructure. J. Comput. Theor. Nanos. 12, 4849–4854 (2015)CrossRefGoogle Scholar
  6. 6.
    C. Androulidakis, G. Tsoukleri, N. Koutroumanis, G. Gkikas, P. Pappas, J. Parthenios, K. Papagelis, C. Galiotis, Carbon 81, 322–328 (2015)CrossRefGoogle Scholar
  7. 7.
    S.N. Leung, M.O. Khan, H. Naguib, F. Dawson, Appl. Phys. Lett. 104, 081904 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Hirai, H. Tsuchiya, Y. Kamakura, N. Mori, M. Ogawa, Electron mobility calculation for graphene on substrates. J. Appl. Phys. 116, 083703–083706 (2014)CrossRefGoogle Scholar
  9. 9.
    A. Deshpande, C.H. Sham, J.M.P. Alaboson, J.M. Mullin, G.C. Schatz, M.C. Hersam, J. Am. Chem. Soc. 134, 16759–16764 (2012)CrossRefGoogle Scholar
  10. 10.
    R.T. Thomas, P.A. Rasheed, N. Sandhyarani, J. Colloid. Interf. Sci. 428, 214–221 (2014)CrossRefGoogle Scholar
  11. 11.
    H.H. Chun, J.Y. Lee, J.H. Lee, W.K. Jo, Ind. Eng. Chem. Res. 55, 45–53 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Pumera, Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4, 668–674 (2011)CrossRefGoogle Scholar
  13. 13.
    R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015)CrossRefGoogle Scholar
  14. 14.
    R. Stine, S.P. Mulvaney, J.T. Robinson, C.R. Tamanaha, P.E. Sheehan, Fabrication, optimization, and use of graphene field effect sensors. Phys. Rev. C. 85, 509–521 (2013)Google Scholar
  15. 15.
    S. Wu, Q. He, C. Tan, Y. Wang, H. Zhang, Graphene-based electrochemical sensors. Small 9, 1160–1172 (2013)CrossRefGoogle Scholar
  16. 16.
    D. Reddy, L.F. Register, G.D. Carpenter, S.K. Banerjee, Graphene field-effect transistors. J. Phys. D: Appl. Phys. 44, 313001 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Zhang, C.Z. Liao, Y.L. Yao, Z.K. Liu, F.F. Gong, F. Yan, High-performance dopamine sensors based on whole graphene solution-gated transistors. Adv. Funct. Mater. 24, 978–985 (2014)CrossRefGoogle Scholar
  18. 18.
    H.J. Salavagione, G. Martínez, G. Ellis, Recent advances in the covalent modification of graphene with polymers. Macromol. Rapid. Comm. 32, 1771–1789 (2011)CrossRefGoogle Scholar
  19. 19.
    B.M. Yoo, H.J. Shin, H.W. Yoon, H.B. Park, Graphene and graphene oxide and their uses in barrier polymers. J. Appl. Polym. Sci. 131, 1–15 (2014)CrossRefGoogle Scholar
  20. 20.
    B. Jayasena, S. Subbiah, A novel mechanical cleavage method for synthesizing few layer graphene. Nanoscale Res. Lett. 6, 95 (2011)CrossRefGoogle Scholar
  21. 21.
    R.V. Lapshin, S.T.M observation of a box-shaped graphene nanostructure appeared after mechanical cleavage of pyrolytic graphite. Appl. Surf. Sci. 360, 451–460 (2016)CrossRefGoogle Scholar
  22. 22.
    H. Choi, Y. Lim, M. Park, S. Lee, Y. Kang, M.S. Kim, J. Kim, M. Jeon, Precise control of chemical vapor deposition graphene layer thickness using NixCu1-x alloys. J. Mater. Chem. C. 3, 1463–1467 (2015)CrossRefGoogle Scholar
  23. 23.
    T. Ciuk, P. Caban, W. Strupinski, Charge carrier concentration and offset voltage in quasi-free-standing monolayer chemical vapor deposition graphene on SiC. Carbon 101, 431–438 (2016)CrossRefGoogle Scholar
  24. 24.
    J.J. Ma, Y.S. He, W.M. Zhang, J.L. Wang, X.W. Yang, X.Z. Liao, Z.F. Ma, An experimental insight into the advantages of in situ solvothermal route to construct 3D graphene-based anode materials for lithium-ion batteries. Nano Energy 16, 235–246 (2015)CrossRefGoogle Scholar
  25. 25.
    Y. Lei, J. Xu, R. Li, F.F. Chen, Solvothermal synthesis of CdS-graphene composites by varying the Cd/S ratio. Ceram. Int. 41, 3158–3161 (2015)CrossRefGoogle Scholar
  26. 26.
    N.T. Shelke, B.R. Karche, Ultraviolet photosensor based on few layered reduced graphene oxide nanosheets. Appl. Surf. Sci. 418, 374–379 (2017)CrossRefGoogle Scholar
  27. 27.
    X.F. Li, L. Basile, B. Huang, C. Ma, J.W. Lee, I.V. Vlassiouk, A.A. Puretzky, M.W. Lin, M. Yoon, M.F. Chi, J.C. Idrobo, C.M. Rouleau, B.G. Sumpter, D.B. Geohegan, K. Xiao, Van der waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene. ACS Nano 9, 8078–8088 (2015)CrossRefGoogle Scholar
  28. 28.
    S. Haar, A. Ciesielski, J. Clough, H.F. Yang, R. Mazzaro, F. Richard, S. Conti, N. Merstorf, M. Cecchini, V. Morandi, C. Casiraghi, P. Samori, Graphene: a supramolecular strategy to leverage the liquid-phase exfoliation of graphene in the presence of surfactants: unraveling the role of the length of fatty acids. Small 11, 1691–1702 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Ciesielski, P. Samor, Supramolecular approaches to graphene: from self-assembly to molecule-assisted liquid-phase exfoliation. Adv. Mater. 28, 6030–6051 (2016)CrossRefGoogle Scholar
  30. 30.
    S. Gurunathan, J.W. Han, E.S. Kim, J.H. Park, J.H. Kim, Reduction of graphene oxide by resveratrol: A novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule. Int. J. Nanomed. 10, 2951–2969 (2015)CrossRefGoogle Scholar
  31. 31.
    H. Pan, Y.D. Zhang, X.D. Wang, L.G. Yu, Z.J. Zhang, Simultaneous surface modification and chemical reduction of graphene oxide using ethylene diamine. J. Nanosci. Nanotechno. 16, 2557–2563 (2016)CrossRefGoogle Scholar
  32. 32.
    W.C. Ye, J. Yu, Y.X. Zhou, D.Q. Gao, D.A. Wang, C.M. Wang, D.S. Xue, Green synthesis of Pt-Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction. Appl. Catal. B-Environ. 28, 258–263 (2014)Google Scholar
  33. 33.
    D.Z. Chen, L.D. Li, L. Guo, An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Nanotechnology 22, 325601–325607 (2011)CrossRefGoogle Scholar
  34. 34.
    M. Salavati-Niasari, M. Ranjbar, M. Sabet, Synthesis and characterization of znin2s4 nanoparticles by a facile microwave approach. J. Inorg. Organomet. Polym. Mater. 23, 452–457 (2013)CrossRefGoogle Scholar
  35. 35.
    S. Thakur, N. Karak, Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50, 5331–5339 (2012)CrossRefGoogle Scholar
  36. 36.
    D.R. Dreyer, S. Murali, Y.W. Zhu, R.S. Ruoff, C.W. Bielawski, Reduction of graphite oxide using alcohols. J. Mater. Chem. 21, 3443–3447 (2011)CrossRefGoogle Scholar
  37. 37.
    K. Kakaei, Palladium silver nanoparticle catalysts synthesis on graphene via a green reduction in tea solution for oxygen reduction reaction in PEM fuel cells. Am. J. Phar. E. 76, 1203–1214 (2014)Google Scholar
  38. 38.
    O. Akhavan, E. Ghaderi, A. Esfandiar, Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J. Phys. Chem. B. 115, 6279–6288 (2011)CrossRefGoogle Scholar
  39. 39.
    J.B. Liu, S.H. Fu, B. Yuan, Y.L. Li, Z.X. Deng, Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 132, 7279–7281 (2010)CrossRefGoogle Scholar
  40. 40.
    L.C. Soo, Fabrication of glucose sensor using graphene, University Malaysia Pahang, 2015Google Scholar
  41. 41.
    X.W. Wang, W. Ai, N. Li, T. Yu, P. Chen, Graphene-bacteria composite for oxygen reduction and lithium ion batteries. J. Mater. Chem. A. 3, 12873–12879 (2015)CrossRefGoogle Scholar
  42. 42.
    C.Z. Zhu, S.J. Guo, Y.X. Fang, S.J. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4, 2429–2437 (2010)CrossRefGoogle Scholar
  43. 43.
    M.F. Abdullah, R. Zakaria, S.H.S. Zein, Green tea polyphenol-reduced graphene oxide: derivatisation, reduction efficiency, reduction mechanism and cytotoxicity. RSC Adv. 4, 34510–34518 (2014)CrossRefGoogle Scholar
  44. 44.
    H.J. Chu, C.Y. Lee, N.H. Tai, Green reduction of graphene oxide by Hibiscus sabdariffa L. to fabricate flexible graphene electrode. Carbon 80, 725–733 (2014)CrossRefGoogle Scholar
  45. 45.
    Y. Feng, N.N. Feng, G.X. Du, A green reduction of graphene oxide via starch-based materials. RSC Adv. 3, 21466–21474 (2013)CrossRefGoogle Scholar
  46. 46.
    J.K. Ma, X.R. Wang, Y. Liu, T. Wu, Y. Liu, Y.Q. Guo, R.Q. Li, X.Y. Sun, F. Wu, C.B. Li, J.P. Gao, Reduction of graphene oxide with l-lysine to prepare reduced graphene oxide stabilized with polysaccharide polyelectrolyte. J. Mater. Chem. A. 1, 2192–2201 (2013)CrossRefGoogle Scholar
  47. 47.
    R.J. Liao, Z.H. Tang, T.F. Lin, B.C. Guo, Scalable and versatile graphene functionalized with the mannich condensate. ACS Appl. Mat. Interfaces 5, 2174–2181 (2013)CrossRefGoogle Scholar
  48. 48.
    J. Li, G.Y. Xiao, C.B. Chen, R. Li, D.Y. Yan, Superior dispersions of reduced graphene oxide synthesized by using gallic acid as a reductant and stabilizer. J. Mater. Chem. A. 1, 1481–1487 (2013)CrossRefGoogle Scholar
  49. 49.
    O. Akhavan, M. Kalaee, Z.S. Alavi, S.M.A. Ghiasi, A. Esfandiar, Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon 50, 3015–3025 (2012)CrossRefGoogle Scholar
  50. 50.
    B.K. Ahn, J. Sung, Y.H. Li, N. Kim, M. Ikenberry, K. Hohn, N. Mohanty, P. Nguyen, T.S. Sreeprasad, S. Kraft, Synthesis and characterization of amphiphilic reduced graphene oxide with epoxidized methyl oleate. Adv. Mater. 24, 2123–2129 (2012)CrossRefGoogle Scholar
  51. 51.
    Y. Wang, Z.X. Shi, J. Yin, Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl. Mater. Interfaces 3, 1127–1133 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Lina Shi
    • 1
  • Rong Wang
    • 1
  • Deguo Zhou
    • 2
  • Yan Liu
    • 1
  • Yanzong Zhang
    • 1
  1. 1.College of EnvironmentSichuan Agricultural UniversityChengduChina
  2. 2.Befar Group Co., Ltd.BinzhouChina

Personalised recommendations