Advertisement

Hydrothermal Synthesis of Manganese-Containing Hydrochars for Lead Ion Removal

  • Can Wang
  • Jia Li
  • Xixi Liu
  • Shengtao Xing
  • Zichuan Ma
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

Manganese-containing hydrochars were synthesized by hydrothermal carbonization process of Fraxinus mandshurica sawdust in the presence of KMnO4 or MnSO4. The products were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDS) and N2 adsorption–desorption isotherms. The characterization results indicated that the structure, composition and surface properties of the products were dependent on the type of manganese compounds. The introduction of Mn into hydrochar increased its surface area and pore volume. The manganese-containing hydrochar (M7HC) prepared with KMnO4 was a mixture of Mn3O4, MnCO3 and carbon with low graphitization degree. Adsorption experiments were carried out to investigate the effect of various factors such as pH, contact time and initial concentration on the adsorption of Pb(II). The kinetic data and the thermodynamic data were well fitted by the pseudo-second order model and Langmuir model, respectively. The maximum adsorption capacity of Pb(II) on M7HC was found to be 95.05 mg/g. The results showed that M7HC could be effectively used as a promising cheap adsorbent to remove heavy metal ions from aqueous solution.

Keywords

Manganese-containing hydrochar Hydrothermal carbonization Lead ions Adsorption 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 21677046), the Natural Science Foundation of Hebei Province of China (No. B2017205146), and Hebei province in 2016 college students’ innovative training program (201610094011).

References

  1. 1.
    J. Jiang, R.K. Xu, T.Y. Jiang, Z. Li, Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J. Hazard. Mater. 229–230, 145–150 (2012)CrossRefGoogle Scholar
  2. 2.
    H.H. Cho, K. Wepasnick, B.A. Smith, F.K. Bangash, D.H. Fairbrother, W.P. Ball, Sorption of aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir 26, 967–981 (2010)CrossRefGoogle Scholar
  3. 3.
    D.A. Shaughnessy, H. Nitsche, C.H. Booth, D.K. Shuh, G.A. Waychunas, R.E. Wilson, H. Gill, K.J. Cantrell, R.J. Serne, Molecular interfacial reactions between Pu(VI) and manganese oxide minerals manganite and hausmannite. Environ. Sci. Technol. 37, 3367–3374 (2003)CrossRefGoogle Scholar
  4. 4.
    Z.G. Song, F. Lian, Z.H. Yu, L.Y. Zhu, B.S. Xing, W.W. Qiu, Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution. Chem. Eng. J. 242, 36–42 (2014)CrossRefGoogle Scholar
  5. 5.
    Z.G. Liu, F.S. Zhang, Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J. Hazard. Mater. 167, 933–939 (2009)CrossRefGoogle Scholar
  6. 6.
    X.C. Chen, G.C. Chen, L.G. Chen, Y.X. Chen, J. Lehmann, M.B. McBride, A.G. Hay, Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol. 102, 8877–8884 (2011)CrossRefGoogle Scholar
  7. 7.
    M.S.U. Rehman, I. Kim, N. Rashid, M.A. Umer, M. Sajid, J.-I. Han, Adsorption of Brilliant Green dye on biochar prepared from lignocellulosic bioethanol plant waste. Clean Soil. Air Water 44(1), 55–62 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Moyo, S.T. Lindiwe, E. Sebata, B.C. Nyamunda, U. Guyo, Equilibrium, kinetic and thermodynamic studies on biosorption of Cd(II) from aqueous solution by biochar. Res. Chem. Intermed. 42, 1349–1362 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Zhang, B. Gao, Y. Yao, Y.W. Xue, M. Inyang, Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chem. Eng. J. 210, 26–32 (2012)CrossRefGoogle Scholar
  10. 10.
    M. Zhang, B. Gao, S. Varnoosfaderani, A. Hebard, Y. Yao, M. Inyang, Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour. Technol. 130, 457–462 (2013)CrossRefGoogle Scholar
  11. 11.
    X.D. Zhu, Y.C. Liu, F. Qian, C. Zhou, S.C. Zhang, J.M. Chen, Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Bioresour. Technol. 154, 209–214 (2014)CrossRefGoogle Scholar
  12. 12.
    D.L. Zhao, X. Yang, H. Zhang, C.L. Chen, X.K. Wang, Effect of environmental conditions on Pb(II) adsorption on β-MnO2. Chem. Eng. J. 164, 49–55 (2010)CrossRefGoogle Scholar
  13. 13.
    M.C. Wang, G.D. Sheng, Y.P. Qiu, A novel manganese-oxide/biochar composite for efficient removal of lead(II) from aqueous solutions. Int. J. Environ. Sci. Technol. 12, 1719–1726 (2015)CrossRefGoogle Scholar
  14. 14.
    A.B. Fuertes, M. Camps Arbestain, M. Sevilla, J.A. Maciá-Agulló, S. Fiol, R. López, R.J. Smernik, W.P. Aitkenhead, F. Arce, F. Macias, Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Aust. J. Soil. Res. 48, 618–626 (2010)CrossRefGoogle Scholar
  15. 15.
    M. Sevilla, A.B. Fuertes, R. Mokaya, High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy Environ. Sci. 4, 1400–1410 (2011)CrossRefGoogle Scholar
  16. 16.
    C. Falco, J.P. Marco-Lozar, D. Salinas-Torres, E. Morallón, D. Cazorla-Amorós, M.M. Titirici, D. Lozano-Castelló, Tailoring the porosity of chemically activated hydrothermal carbons: influence of the precursor and hydrothermal carbonization temperature. Carbon. 62, 346–355 (2013)CrossRefGoogle Scholar
  17. 17.
    X.D. Zhu, Y.C. Liu, C. Zhou, S.C. Zhang, J.M. Chen, Novel and high-performance magnetic carbon composite prepared from waste hydrochar for dye removal. ACS Sustain. Chem. Eng. 2, 969–977 (2014)CrossRefGoogle Scholar
  18. 18.
    M.T. Reza, M.H. Uddin, J.G. Lynam, S.K. Hoekman, C.J. Coronella, Hydrothermal carbonization of loblolly pine: reaction chemistry and water balance. Biomass. Convers. Biorefinery 4, 311–321 (2014)CrossRefGoogle Scholar
  19. 19.
    S.K. Hoekman, A. Broch, C. Robbins, B. Zielinska, L. Felix, Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass. Convers. Biorefinery 3, 113–126 (2013)CrossRefGoogle Scholar
  20. 20.
    J.G. Lynam, M.T. Reza, W. Yan, V.R. Vásquez, C.J. Coronella, Hydrothermal carbonization of various lignocellulosic biomass. Biomass. Convers. Biorefinery 5, 173–181 (2015)CrossRefGoogle Scholar
  21. 21.
    H. Knicker, K.U. Totsche, G. Almendros, F.J. González-Vila, Condensation degree of burnt peat and plant residues and the reliability of solid-state VACP MAS 13C NMR spectra obtained from pyrogenic humic material. Org. Geochem. 36, 1359–1377 (2005)CrossRefGoogle Scholar
  22. 22.
    K. Hammes, R.J. Smernik, J.O. Skjemstad, A. Herzog, U.F. Vogt, M.W.I. Schmidt, Synthesis and characterisation of laboratory-charred grass straw (Oryza sativa) and chestnut wood (Castanea sativa) as reference materials for black carbon quantification. Org. Geochem. 37, 1629–1633 (2006)CrossRefGoogle Scholar
  23. 23.
    S.M. Kang, X.L. Li, J. Fan, J. Chang, Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal. Ind. Eng. Chem. Res. 51, 9023–9031 (2012)CrossRefGoogle Scholar
  24. 24.
    L.L. Wang, Y.P. Guo, Y.C. Zhu, Y. Li, Y.N. Qu, C.G. Rong, X.Y. Wang, Z.C. Ma, A new route for preparation of hydrochars from rice husk. Bioresour. Technol. 101, 9807–9810 (2010)CrossRefGoogle Scholar
  25. 25.
    X.Y. Chen, C. Chen, Z.J. Zhang, D.H. Xie, J.W. Liu, Nitrogen/manganese oxides doped porous carbons derived from sodium butyl naphthalene sulfonate. J. Colloid. Interf. Sci. 398, 176–184 (2013)CrossRefGoogle Scholar
  26. 26.
    K. Sun, K. Ro, M.X. Guo, J. Novak, H. Mashayekhi, B.S. Xing, Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresour. Technol. 102, 5757–5763 (2011)CrossRefGoogle Scholar
  27. 27.
    L.M. Wu, C.H. Zhou, D.S. Tong, W.H. Yu, H. Wang, Novel hydrothermal carbonization of cellulose catalyzed by montmorillonite to produce kerogen-like hydrochar. Cellulose. 21, 2845–2857 (2014)CrossRefGoogle Scholar
  28. 28.
    X.Y. Xu, X.D. Cao, L. Zhao, H.L. Wang, H.R. Yu, B. Gao, Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ. Sci. Pollut. Res. 20, 58–368 (2013)Google Scholar
  29. 29.
    X.D. Cao, L.N. Ma, B. Gao, W. Harris, Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 43, 3285–3291 (2009)CrossRefGoogle Scholar
  30. 30.
    L.X. Yang, Y. Liang, H. Chen, Y.F. Meng, W. Jiang, Controlled synthesis of Mn3O4 and MnCO3 in a solvothermal system. Mater. Res. Bull. 44, 1753–1759 (2009)CrossRefGoogle Scholar
  31. 31.
    L.K. Zhou, X.H. Kong, M. Gao, F. Lian, B.J. Li, Z.F. Zhou, H.Q. Cao, Inorg. Chem. 53, 9228–9234 (2014)CrossRefGoogle Scholar
  32. 32.
    J.W. Lee, A.S. Hall, J.D. Kim, T.E. Mallouk, Chem. Mater. 24, 1158–1164 (2012)CrossRefGoogle Scholar
  33. 33.
    A.C.A. de Lima, R.F. Nascimento, F.F. de Sousa, J.M. Filho, A.C. Oliveira, Chem. Eng. J. 185–186, 274–284 (2012)CrossRefGoogle Scholar
  34. 34.
    V.O. de Sousa Neto, D.Q. Melo, T.C. de Oliveira, R.N.P. Teixeira, M.A.A. Silva, R.F. do Nascimento, J. Appl. Polym. Sci. 40744, 1–11 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Can Wang
    • 1
  • Jia Li
    • 1
  • Xixi Liu
    • 1
  • Shengtao Xing
    • 1
  • Zichuan Ma
    • 1
  1. 1.College of Chemistry and Material ScienceHebei Normal UniversityShijiazhuangChina

Personalised recommendations