Effect of Working Pressure on the Structural and Thermoelectric Properties of Bismuth Telluride Thin Films Deposited by Magnetron Sputtering

  • Zhiwei Zhang
  • Yuan Deng
  • Yao Wang
  • Daming Zhu
  • Wenhui Yan
  • Zhigang Jia
  • Fen Wang
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


Highly (00l)-oriented bismuth telluride polycrystalline thin films were prepared on quartz glass by magnetron co-sputtering at appropriate working pressure. The effect of working pressure on the growth behavior, microstructure and electrical transport properties of Bi2Te3 thin films were studied. The results showed that increasing working pressure brought more particle scattering and also decreased the velocity of the sputtered particles. As a result, the nucleation rate of the crystal grains decreased and more sufficient growth along the in-plane direction was induced. When the working pressure was 2.0 Pa, the balance between nucleation rate and growth rate of the crystal grains reached, which brings highly (00l) crystal plane orientation in Bi2Te3 polycrystalline thin film. Compared with the Bi2Te3 thin film with certain (015) orientation deposited at 0.5 Pa, the (00l)-oriented Bi2Te3 thin film had the double Seebeck coefficient, which was above −200 μV K−1 between 300 and 400 K and reached to the maximum value −225 μV K−1 at 360 K. Therefore the power factor of the thin film is greatly enhanced and reaches to above 38 × 10−4 W m−1 K−2 at 360 K, which is comparable to the value of the optimal Bi2Te2.7Se0.3 bulk alloys.


Bismuth telluride Thin film Magnetron sputtering Thermoelectric property 



This work was supported by the State Key Program of National Natural Science Foundation of China (Grant No. 61534001) and National Natural Science Foundation of China (Grant No. 51601005)


  1. 1.
    I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, R. Venkatasubramanian, On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4, 235–238 (2009)CrossRefGoogle Scholar
  2. 2.
    Q. Zhang, X. Huang, S. Bai, X. Shi, C. Uher, L. Chen, Adv. Eng. Mater. 18, 194–213 (2016)CrossRefGoogle Scholar
  3. 3.
    X. Hu, P. Jood, M. Ohta, M. Kunii, K. Nagase, H. Nishiate, M.G. Kanatzidis, A. Yamamoto, Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules. Energy Environ. Sci. 9, 517–529 (2016)CrossRefGoogle Scholar
  4. 4.
    D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (CRC Press, Boca Raton, 2005)CrossRefGoogle Scholar
  5. 5.
    Y. Chen, M. He, B. Liu, G.C. Bazan, J. Zhou, Z. Liang, Bendable n-type metallic nanocomposites with large thermoelectric power factor. Adv. Mater. 29, 1604752 (2017)CrossRefGoogle Scholar
  6. 6.
    L.D. Zhao, V.P. Dravid, M.G. Kanatzidis, The panoscopic approach to high performance thermoelectrics. Energy Environ. Sci. 7, 251–268 (2014)CrossRefGoogle Scholar
  7. 7.
    Y. Pei, H. Wang, G.J. Snyder, Band engineering of thermoelectric materials. Adv. Mater. 24, 6125–6135 (2012)CrossRefGoogle Scholar
  8. 8.
    J.J. Urban, Prospects for thermoelectricity in quantum dot hybrid arrays. Nat. Nanotechnol. 10, 997–1001 (2015)CrossRefGoogle Scholar
  9. 9.
    Y. Liu, P. Sahoo, J.P.A. Makongo, X. Zhou, S.J. Kim, H. Chi, C. Uher, X. Pan, P.F.P. Poudeu, Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors. J. Am. Chem. Soc. 135, 7486–7495 (2013)CrossRefGoogle Scholar
  10. 10.
    D. Wu, L.D. Zhao, F. Zheng, L. Jin, M.G. Kanatzidis, J. He, Understanding nanostructuring processes in thermoelectrics and their effects on lattice thermal conductivity. Adv. Mater. 28, 2737–2743 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Tan, Y. Deng, Y. Wang, Ordered structure and high thermoelectric properties of Bi2(Te, Se)3 nanowire array. Nano Energy 3, 144–151 (2014)CrossRefGoogle Scholar
  12. 12.
    M. Kashiwagi, S. Hirata, K. Harada, Y. Zheng, K. Miyazaki, M. Yahiro, C. Adachi, Enhanced figure of merit of a porous thin film of bismuth antimony telluride. Appl. Phys. Lett. 98, 023114 (2011)CrossRefGoogle Scholar
  13. 13.
    N. Peranio, M. Winkler, M. Dürrschnabel, J. König, O. Eibl, Assessing antisite defect and impurity concentrations in Bi2Te3 based thin films by high-accuracy chemical analysis. Adv. Funct. Mater. 23, 4969–4976 (2013)CrossRefGoogle Scholar
  14. 14.
    A. Li Bassi, A. Bailini, C.S. Casari, F. Donati, A. Mantegazza, M. Passoni, V. Russo, C.E. Bottani, Thermoelectric properties of Bi–Te films with controlled structure and morphology. J. Appl. Phys. 105, 124307 (2009)CrossRefGoogle Scholar
  15. 15.
    Z. Sun, S. Liufu, X. Chen, L. Chen, Enhanced thermoelectric properties of Bi0.5Sb1.5Te3 films by chemical vapor transport process. ACS Appl. Mater. Interfaces 3, 1390–1393 (2011)CrossRefGoogle Scholar
  16. 16.
    Z. Zhang, Y. Wang, Y. Deng, Y. Xu, The effect of (00l) crystal plane orientation on the thermoelectric properties of Bi2Te3 thin film. Solid State Commun. 151, 1520–1523 (2011)CrossRefGoogle Scholar
  17. 17.
    L.P. Hu, X.H. Liu, H.H. Xie, J.J. Shen, T.J. Zhu, X.B. Zhao, Improving thermoelectric properties of n-type bismuth–telluride-based alloys by deformation-induced lattice defects and texture enhancement. Acta Mater. 60, 4431–4437 (2012)CrossRefGoogle Scholar
  18. 18.
    J.S. Son, M.K. Choi, M.K. Han, K. Park, J.Y. Kim, S.J. Lim, M. Oh, Y. Kuk, C. Park, S.J. Kim, T. Hyeon, Nano Lett. 12, 640–647 (2012)CrossRefGoogle Scholar
  19. 19.
    D.B. Hyun, J.S. Hwang, J.D. Shim, Thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing method. J. Mater. Sci. 36, 1285–1291 (2001)CrossRefGoogle Scholar
  20. 20.
    X. Yan, B. Poudel, Y. Ma, W.S. Liu, G. Joshi, H. Wang, Y.C. Lan, D.Z. Wang, G. Chen, Z.F. Ren, Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Lett. 10, 3373–3378 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Zhiwei Zhang
    • 1
  • Yuan Deng
    • 2
  • Yao Wang
    • 2
  • Daming Zhu
    • 1
  • Wenhui Yan
    • 1
  • Zhigang Jia
    • 1
  • Fen Wang
    • 1
  1. 1.AECC Aero Engine Academy of ChinaBeijingChina
  2. 2.Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, School of Materials Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations