Advertisement

Pentabasic Thermoelectricity System Prepared by Powder Metallurgy Method and the Performance Thermoelectric Generator Modules

  • Ye Guo
  • Jiangduo Wang
  • Yuanfa Deng
  • Chulan Lu
  • Yiping Luo
  • Bin Lin
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

With the technological development and awareness of energy conservation and environmental protection, how to take advantage of waste heat has been concerned global. However, effective methods to recycle low temperature waste heat which is lower than 200 °C are still lacked. A kind of pentabasic thermoelectricity system which is prepared by smelting and powder metallurgy method is described in this paper. Thermoelectric generator (TEG) modules with different area and height ratio (A/H) p-n couples are assembled. At temperature gradient 100 K, the TEG module can obtain the biggest load power 2.39 W corresponding the module with A/H = 5.5 and load resistance 1.5 Ω.

Keywords

Low temperature waste heat Thermoelectric generator modules Area and height ratio Load power 

Notes

Acknowledgements

This work was supported by the Guangdong Leizig Thermoelectric Technologies Co., Ltd.

References

  1. 1.
    M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, G. Chen, Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ. Sci. 5, 5147 (2012)Google Scholar
  2. 2.
    D. Wang, X. Ling, H. Peng, L. Liu, L. Tao, Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation. Energy 50, 343 (2013)Google Scholar
  3. 3.
    Z. Wang, N. Zhou, J. Guo, X. Wang, Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat. Energy 40, 107–115 (2012)Google Scholar
  4. 4.
    J.W. Fergus, Oxide materials for high temperature thermoelectric energy conversion. J. Eur. Ceram. Soc. 32, 525–540 (2012)Google Scholar
  5. 5.
    G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105 (2008)Google Scholar
  6. 6.
    A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009)Google Scholar
  7. 7.
    M. Barati, S. Esfahani, T.A. Utigard, Energy recovery from high temperature slags. Energy 36, 5440 (2011)Google Scholar
  8. 8.
    X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J.Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, Z.F. Ren, Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl. Phys. Lett. 93, 193121 (2008)Google Scholar
  9. 9.
    J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, New and old concepts in thermoelectric materials. Angew. Chem. Int. Edit. 48, 8616–8639 (2009)Google Scholar
  10. 10.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008)Google Scholar
  11. 11.
    Q.H. Zhang, X.Y. Huang, S.Q. Bai, X. Shi, C. Uher, L.D. Chen, Thermoelectric devices for power generation: recent progress and future challenges. Adv. Eng. Mater. 18, 194–213 (2016)Google Scholar
  12. 12.
    D. Kraemer, J. Sui, K. McEnaney, H. Zhao, Q. Jie, Z.F. Renand, G. Chen, High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts. Energy Environ. Sci. 8, 1299–1308 (2015)Google Scholar
  13. 13.
    P.A. Zong, R. Hanus, M. Dylla, Y.S. Tang, J.C. Liao, Q.H. Zhang, G.J. Snyder, L.D. Chen, Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ. Sci. 10, 183–191 (2017)Google Scholar
  14. 14.
    Y.S. Park, T. Thompson, Y. Kim, J.R. Salvador, J.S. Sakamoto, Protective enamel coating for n- and p-type skutterudite thermoelectric materials. J. Mater. Sci. 50, 1500–1512 (2015)Google Scholar
  15. 15.
    J.R. Salvador, J.Y. Cho, Z. Ye, J.E. Moczygemba, A.J. Thompson, J.W. Sharp, J.D. Koenig, R. Maloney, T. Thompson, J. Sakamoto, H. Wang, A.A. Wereszczak, Power-generation characteristics after vibration and thermal stresses of thermoelectric unicouples with CoSb3/Ti/Mo(Cu) interfaces. Phys. Chem. Chem. Phys. 16, 12510–12520 (2014)Google Scholar
  16. 16.
    H.S. Kim, W.S. Liu, Z.F. Ren, The bridge between the materials and devices of thermoelectric power generators. Energy Environ. Sci. 10, 69–85 (2017)Google Scholar
  17. 17.
    T. Sakamoto, Y. Taguchi, T. Kutsuwa, K. Ichimi, S. Kasatani, M. Inada, Investigation of barrier-layer materials for Mg2Si/Ni interfaces. J. Electron. Mater. 45, 321–1327 (2016)Google Scholar
  18. 18.
    M. Gu, X.G. Xia, X.Y. Huang, S.Q. Bai, X.Y. Li, L.D. Chen, Study on the interfacial stability of p-type Ti/CeyFexCo4-xSb12 thermoelectric joints at high temperature. J. Alloys Compd. 671, 238–244 (2016)Google Scholar
  19. 19.
    F. Hao, P. Qiu, Y. Tang, S. Bai, High efficiency Bi2Te3-basedmaterials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ. Sci. 9, 3120 (2016)Google Scholar
  20. 20.
    Q. Zhang, J. Liao, Y. Tang, M. Gu, C. Ming, P. Qiu, S. Bai, X. Shi, C. Uher, L. Chen, Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy Environ. Sci. 10, 956–963 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Guangdong Leizig Thermoelectric Technologies Co., Ltd.GuangzhouChina

Personalised recommendations