Advertisement

Effect of Grain Orientation on Surface Damage of Niobium Doped Tungsten with Helium Implantation

  • Yutian Ma
  • Junbiao Liu
  • Han Li
  • Long Cheng
  • Ying Zhang
  • Kaigui Zhu
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

Niobium doped tungsten was irradiated by helium ion implantation, and the effect of grain orientation on surface damage induced by helium sputtering was studied by X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and electron backscattered diffraction. Many cavities or pores caused by helium sputtering were observed on the surface of the samples, and the surface damage of tungsten by helium irradiation was aggravated by 1.0 × 1018 Nb/cm2 doping. It was found that the surface damage of different crystal orientations was distinct under same helium implantation condition. The surface damage of grains with (1 1 0) orientation was worse than that of grains with (1 1 1) and (1 0 0) orientation. The result suggested that the surface damage induced by helium sputtering was closely related to helium implantation fluence and grain orientation.

Keywords

Tungsten Helium implantation Sputtering Grain orientation 

Notes

Acknowledgements

This research is supported by the National Magnetic Confinement Fusion Programs with Grant No. 2013GB109003, and the National Natural Science Foundation of China with Grant No. 51171006, and Scientific Research equipment development project of Chinese Academy of Sciences (with Grant No. YZ201410).

References

  1. 1.
    J. Roth, E. Tsitrone, A. Loarte, et al., Recent analysis of key plasma wall interactions issues for ITER. J. Nucl. Mater. 390–391, 1–9 (2009)Google Scholar
  2. 2.
    H. Bolt, V. Barabash, G. Federici, et al., Plasma facing and high heat flux materials—needs for ITER and beyond. J. Nucl. Mater. 307–311, 43–52 (2002)Google Scholar
  3. 3.
    H. Bolt, V. Barabash, W. Krauss, et al., Materials for the plasma-facing components of fusion reactors. J. Nucl. Mater. 329–333, 66–73 (2004)Google Scholar
  4. 4.
    K. Tokunaga, R.P. Doerner, R. Seraydarian, et al., Surface morphology and helium retention on tungsten exposed to low energy and high flux helium plasma. J. Nucl. Mater. 313–316, 92–96 (2003)Google Scholar
  5. 5.
    D. Nishijima, M.Y. Ye, N. Ohno, et al., Incident ion energy dependence of bubble formation on tungsten surface with low energy and high flux helium plasma irradiation. J. Nucl. Mater. 313–316, 1029–1033 (2004)Google Scholar
  6. 6.
    S.B. Gilliam, S.M. Gidcumb, N.R. Parikh, et al., Retention and surface blistering of helium irradiated tungsten as a first wall material. J. Nucl. Mater. 347, 289–297 (2005)Google Scholar
  7. 7.
    M. Tomita, K. Masumori, Fluence- and temperature-dependence of sputtering yield by 25 keV He-ion bombardment on tungsten and niobium. Nucl. Instr. Methods B. 39, 95–98 (1989)Google Scholar
  8. 8.
    M.J. Baldwin, R.P. Doerner, Formation of helium induced nanostructure ‘fuzz’ on various tungsten grades. J. Nucl. Mater. 404, 165–173 (2010)Google Scholar
  9. 9.
    A. Lasa, K.O.E. Henriksson, K. Nordlund, MD simulations of onset of tungsten fuzz formation under helium irradiation. Nucl. Instr. Methods B. 303, 156–161, (2013)Google Scholar
  10. 10.
    D. Nishijima, M.J. Baldwin, R.P. Doerner, et al., Sputtering properties of tungsten ‘fuzzy’ surfaces. J. Nucl. Mater. 415, 96–99 (2011)Google Scholar
  11. 11.
    K. Katayama, K. Imaoka, T. Okamura, et al., Helium and hydrogen trapping in tungsten deposition layers formed by helium plasma sputtering. Fusion Eng. Des. 82, 1645–1650 (2007)Google Scholar
  12. 12.
    B.M.U. Scherzer, in Development of Surface Topography Due to Gas Ion Implantation, ed. by R. Behrisch. Sputtering by Particle Bombardment, (Springer, Berlin, 1981) pp. 271–355Google Scholar
  13. 13.
    C. Li, H. Greuner, Y. Yuan, et al., Effects of temperature on surface modification of W exposed to He particles. J. Nucl. Mater. 455, 201–206 (2014)Google Scholar
  14. 14.
    N. Ohno, Y. Hirahata, M. Yamagiwa, et al., Influence of crystal orientation on damages of tungsten exposed to helium plasma. J. Nucl. Mater. 438, 879–882 (2013)Google Scholar
  15. 15.
    C.M. Parish, H. Hijazi, H.M. Meyer, et al., Effect of tungsten crystallographic orientation on He-ion-induced surface morphology changes. Acta Mater. 62, 173–181 (2014)Google Scholar
  16. 16.
    M. Hou, C.J. Ortiz, C.S. Becquart, et al., Microstructure evolution of irradiated tungsten: crystal effects in He and H implantation as modelled in the binary collision approximation. J. Nucl. Mater. 403, 89–100 (2010)Google Scholar
  17. 17.
    F. Sefta, N. Juslin, K. D. Hammond, et al., Molecular dynamics simulations on the effect of sub-surface helium bubbles on the sputtering yield of tungsten. J. Nucl Mater. 438, 493–496 (2013)Google Scholar
  18. 18.
    C.S. Becquart, C. Domain, Ab initio calculations about intrinsic point defects and He in W. Nucl. Instr. Methods B. 255, 23–26 (2007)Google Scholar
  19. 19.
    Y.T. Ma, Y. Zhang, G.H. Lu, et al., Effect of helium implantation on mechanical properties of niobium doped tungsten, Sci. Chin. Phys. Mech. Astron. 56(7), 1396–1400 (2013)Google Scholar
  20. 20.
    D. Manova, M. Schreck, S. Mändl, et al., Orientation dependent sputter yield of aluminium. Surf. Coat. Technol. 151–152, 72–75 (2002)Google Scholar
  21. 21.
    H.K. Zhang, D.M. Liu, H.B. Li et al., Study on the microstructure of high purity aluminum sputtering targets by EBSD method. J. Chin. Electr. Microsc. Soc. 27(6), 491–494 (2008)Google Scholar
  22. 22.
    C.A. Michaluk, Correlating discrete orientation and grain size to the sputter deposition properties of tantalum. J. Electron Mater. 31(1), 1–9 (2002)Google Scholar
  23. 23.
    S. Sharafat, A. Takahashi, K. Nagasawa et al., A description of stress driven bubble growth of helium implanted tungsten. J. Nucl. Mater. 389, 203–212 (2009)Google Scholar
  24. 24.
    Q. Xu, N. Yoshida, T. Yoshiie, Accumulation of helium in tungsten irradiated by helium and neutrons. J. Nucl. Mater. 367–370, 806–811 (2007)Google Scholar
  25. 25.
    X-B. Wu, X-S. Kong, Y-W. You, et al., First principles study of helium trapping by solute elements in tungsten. J. Nucl. Mater. 455, 151–156 (2014)Google Scholar
  26. 26.
    H.S. Huang, C.H. Chiu, I.T. Hong, et al., Determining the sputter yields of molybdenum in low-index crystal planes via electron backscattered diffraction, focused ion beam and atomic force microscope. Mater. Charact. 83, 68–73 (2013)Google Scholar
  27. 27.
    G. Kresse, J. Hafner, Ab Initio Molecular Dynamics for Liquid Metals. Phys Rev B. 47, 558–561 (1993)Google Scholar
  28. 28.
    G. Kresse, J. Furthmüller, Efficiency of Ab-Initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996)Google Scholar
  29. 29.
    G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758–1775 (1999)Google Scholar
  30. 30.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)Google Scholar
  31. 31.
    M. Methfessel, A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B. 40, 3616 (1989)Google Scholar
  32. 32.
    C. Michaluk, Metallurgical Factors Affecting the Performance of Tantalum Sputtering Targets, ed. by C. Culbertson. Proceedings of 41th International Symposium on Tantalum and Niobium. Brussels, Belgium: Tantalum–Niobium International Study Center, 2000, p. 75Google Scholar
  33. 33.
    R.S. Averback, T.D. Rubia, Displacement damage in irradiated metals and semiconductors. Solid State Phys. 51, 281–402, (1997)Google Scholar
  34. 34.
    J.M. Fluit, P.K. Rol, J. Kistemaker, Angular-dependent sputtering of copper single crystals. J. Appl. Phys. 34, 690–691 (1963)Google Scholar
  35. 35.
    A.L. Southern, W.R. Willis, M.T. Robinson, Sputtering experiments with 1- to 5-keV Ar + ions, J. Appl. Phys. 34, 153–163 (1963)Google Scholar
  36. 36.
    G.D. Magnuson, C.E. Carlston, Electron ejection from metals due to 1- to 10-keV noble gas ion bombardment. I. polycrystalline materials. J. Appl. Phys. 34, 3267–3273 (1963)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yutian Ma
    • 1
    • 2
  • Junbiao Liu
    • 1
  • Han Li
    • 1
  • Long Cheng
    • 2
  • Ying Zhang
    • 2
  • Kaigui Zhu
    • 2
  1. 1.Institute of Electrical Engineering, Chinese Academy of SciencesBeijingChina
  2. 2.Department of PhysicsBeihang UniversityBeijingChina

Personalised recommendations