Surface Modification for Medical Devices

  • Naoki KawazoeEmail author
  • Yoshihiro Ito
  • Guoping Chen


Surface modification is recognized as one of the important and predominant techniques for improving biocompatibility and bioactivity of medical devices without altering their bulk properties. This chapter deals with surface modification using polymers derivatized with photoreactive groups for biomedical applications. The technique provides a powerful tool because of stable covalent bonds between modifiers and substrates, and it is capable of withstanding long-term use under physiological condition. By means of the technique, a wide variety of naturally derived and synthetic polymers have been immobilized onto any organic substrates to manipulate cell behavior and cell functions such as cell adhesion, proliferation, differentiation, and migration. Furthermore, these polymers have been micropatterned onto substrates by UV photolithography to spatially control cell-adhesive regions and the immobilization of bioactive molecules. Culturing cells on the modified and micropatterned surface provide us with some interesting results on their functions that are not observed in the conventionally used cell culture substrates.


Surface modification Biocompatibility Bioactivity Photoreactive groups Micropatterning 


  1. 1.
    Sivakumar, P.M., Zhou, D., Son, T.I., Ito, Y.: Design and synthesis of photoreactive polymers for biomedical applications. In: Ramalingam, M., Wang, X., Chen, G., Ma, P., Cui, F-Z.: Biomimetics: Advancing Nanobiomaterials and Tissue Engineering, pp. 253–278. Scrivener Publishing (2013)CrossRefGoogle Scholar
  2. 2.
    Jaiswal, N., Haynesworth, S.E., Caplan, A.I., Bruder, S.P.: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 64, 295–312 (1997)CrossRefPubMedGoogle Scholar
  3. 3.
    Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., Marshak, D.R.: Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999)CrossRefPubMedGoogle Scholar
  4. 4.
    Marklein, R.A., Burdick, J.A.: Controlling stem cell fate with material design. Adv. Mater. 22, 175–189 (2010)CrossRefPubMedGoogle Scholar
  5. 5.
    Guilak, F., Cohen, D.M., Estes, B.T., Gimble, J.M., Liedtke, W., Chen, C.S.: Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17–26 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)CrossRefPubMedGoogle Scholar
  7. 7.
    Dalby, M.J., Gadegaard, N., Tare, R., Andar, A., Riehle, M.O., Herzyk, P., Wilkinson, C.D.W., Oreffo, R.O.C.: The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 6, 997–1003 (2007)CrossRefPubMedGoogle Scholar
  8. 8.
    Mcbeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K., Chen, C.S.: Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004)CrossRefPubMedGoogle Scholar
  9. 9.
    Peerani, R., Rao, B.M., Bauwens, C., Yin, T., Wood, G.A., Nagy, A., Kumacheva, E., Zandstra, P.W.: Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J. 26, 4744–4755 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Connelly, J.T., Gautrot, J.E., Trappmann, B., Tan, D.W.M., Donati, G., Huck, W.T.S., Watt, F.M.: Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat. Cell Biol. 12, 711 (2010)CrossRefPubMedGoogle Scholar
  11. 11.
    Guo, L., Kawazoe, N., Fan, Y., Ito, Y., Tanaka, J., Tateishi, T., Zhang, X., Chen, G.: Chondrogenic differentiation of human mesenchymal stem cells on photoreactive polymer-modified surfaces. Biomaterials 29, 23–32 (2008) CrossRefPubMedGoogle Scholar
  12. 12.
    Ratner, B.D., Hoffman, A.S.: Non-fouling surfaces. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.K.: Biomaterials Science, An Introduction to Materials in Medicine, 3rd ed, pp. 241–247. Academic Press (2013)CrossRefGoogle Scholar
  13. 13.
    Ito, Y., Hasuda, H., Sakuragi, M., Tsuzuki, S.: Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling. Acta Biomater. 3, 1024–1032 (2007)CrossRefPubMedGoogle Scholar
  14. 14.
    Ito, Y., Nogawa, M., Takeda, M., Shibuya, T.: Photo-reactive polyvinylalcohol for photo-immobilized microarray. Biomaterials 26, 211–216 (2005)CrossRefPubMedGoogle Scholar
  15. 15.
    Sugawara, T., Matsuda, T.: Synthesis of phenylazido-derivatized substances and photochemical surface modification to immobilize functional groups. J. Biomed. Mater. Res. 32, 157–164 (1996)CrossRefPubMedGoogle Scholar
  16. 16.
    Ito, Y.: Surface micropatterning to regulate cell functions. Biomaterials 20, 2333–2342 (1999)CrossRefPubMedGoogle Scholar
  17. 17.
    Song, W., Kawazoe, N., Chen, G.: Dependence of spreading and differentiation of mesenchymal stem cells on micropatterned surface area. J. Nanomater 9 (2011)Google Scholar
  18. 18.
    Song, W., Wang, X., Lu, H., Kawazoe, N., Chen, G.: Exploring adipogenic differentiation of a single stem cell on poly(acrylic acid) and polystyrene micropatterns. Soft Matter 8, 8429–8437 (2012)CrossRefGoogle Scholar
  19. 19.
    Wang, X., Hu, X., Dulinska-Molak, I., Kawazoe, N., Yang, Y., Chen, G.: Discriminating the independent influence of cell adhesion and spreading area on stem cell fate determination using micropatterned surfaces. Sci Rep. 6, 13 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Song, W., Lu, H., Kawazoe, N., Chen, G.: Adipogenic differentiation of individual mesenchymal stem cell on different geometric micropatterns. Langmuir 27, 6155–6162 (2011)CrossRefPubMedGoogle Scholar
  21. 21.
    Wang, X., Song, W., Kawazoe, N., Chen, G.: Influence of cell protrusion and spreading on adipogenic differentiation of mesenchymal stem cells on micropatterned surfaces. Soft Matter 9, 4160–4166 (2013)CrossRefGoogle Scholar
  22. 22.
    Lu, H., Guo, L., Wozniak, M.J., Kawazoe, N., Tateishi, T., Zhang, X., Chen, G.: Effect of cell density on adipogenic differentiation of mesenchymal stem cells. Biochem. Biophys. Res. Commun. 381, 322–327 (2009)CrossRefPubMedGoogle Scholar
  23. 23.
    Song, W., Lu, H., Kawazoe, N., Chen, G.: Gradient patterning and differentiation of mesenchymal stem cells on micropatterned polymer surface. J. Bioact. Compat. Polym. 26, 242–256 (2011)CrossRefGoogle Scholar
  24. 24.
    Wang, X., Song, W., Kawazoe, N., Chen, G.: The osteogenic differentiation of mesenchymal stem cells by controlled cell-cell interaction on micropatterned surfaces. J. Biomed. Mater. Res., Part A 101, 3388–3395 (2013)CrossRefGoogle Scholar
  25. 25.
    Nakamoto, T., Wang, X., Kawazoe, N., Chen, G.: Influence of micropattern width on differentiation of human mesenchymal stem cells to vascular smooth muscle cells. Colloid Surf. B Biointerfaces 122, 316–323 (2014)CrossRefPubMedGoogle Scholar
  26. 26.
    Konno, T., Hasuda, H., Ishihara, K., Ito, Y.: Photo-immobilization of a phospholipids polymer. Biomaterials 26, 1381–1388 (2005)CrossRefPubMedGoogle Scholar
  27. 27.
    Lin, X., Fukazawa, K., Ishihara, K.: Photoreactive polymers bearing a zwitterionic phosphorylcholine group for surface modiification of biomaterials. ACS Appl. Mater. Interfaces. 7, 17489–17498 (2015)CrossRefPubMedGoogle Scholar
  28. 28.
    Sakuragi, M., Tsuzuki, S., Obuse, S., Wada, A., Matoba, K., Kubo, I., Ito, Y.: A photoimmobilizable sulfobetaine-based polymer for a nonbiofouling surface. Mater. Sci. Eng. C 30, 316 (2010)CrossRefGoogle Scholar
  29. 29.
    Sakuragi, M., Tsuzuki, S., Hasuda, H., W, A., M, Kenji, Kubo, I., Ito, Y.: Synthesis of a photoimmobilizable histidine polymer for surface modification. J. Apply. Polym. Sci. 112, 315–319 (2009)CrossRefGoogle Scholar
  30. 30.
    Ito, Y., Chen, G., Guan, Y., Imanishi, Y.: Patterned immobilization of thermoresponsive polymer. Langmuir 13, 2756–2759 (1997)CrossRefGoogle Scholar
  31. 31.
    Chen, G., Imanishi, Y., Ito, Y.: Effect of protein and cell behavior on pattern grafted theremoresponsive polymer. J. Biomed. Mater. Res. 42, 38–44 (1998)CrossRefPubMedGoogle Scholar
  32. 32.
    Liu, H., Ito, Y.: Cell attachment and detachment on micropattern-immoblized poly(N-isoprpylacrylamide) with gelatin. Lab Chip 2, 175–178 (2002)CrossRefPubMedGoogle Scholar
  33. 33.
    Hasuda, H., Kwon, O.H., Kang, I.-K., Ito, Y.: Synthesis of photoreactive pullulan for surface modification. Biomaterials 26, 2401–2406 (2005)CrossRefPubMedGoogle Scholar
  34. 34.
    Chen, G., Ito, Y., Imanishi, Y., Magnani, A., Lamporni, S., Barbucci, R.: Photoimmobilization of sulfated hyaluronic acid for antithrombogenicity. Bioconj. Chem. 8, 730–734 (1997)CrossRefGoogle Scholar
  35. 35.
    Na, H.-N., Kim, K.-I., Han, J.-H., Lee, J.-G., Han, D.-J., Ito, Y., Song, K.-S., Jang, E.-C., Son, T.-I.: Synthesis of O-carboxylated low molecular chitosan with azido phenyl group: its application for adhesion prevention. Macromol. Res. 18, 1001–1007 (2010)CrossRefGoogle Scholar
  36. 36.
    Lee, H.J., Park, S.H., Seo, S.Y., Cho, Y.-M., Woo, H.-D., Ito, Y., Son, T.I.: Preparation of photoreactive azidophenyl hyaluronic acid derivative: protein immobilization for medical applications. Macromol. Res. 21, 216–220 (2013)CrossRefGoogle Scholar
  37. 37.
    Seo, S.Y., Park, S.H., Lee, H.J., Heo, Y., Na, H.N., Kim, K.I., Han, J.H., Ito, Y., Son, T.I., Coating of titanium plate by photocurable azidophenyl chitosan derivative for application to implants. J. Appl. Polym. Sci. 128, 4322–4326 (2013)CrossRefGoogle Scholar
  38. 38.
    Matsuda, T., Sugawara, T.: Photochemical protein fixation on polymer surfaces via derivatized phenyl azido group. Langmuir 11, 2272–2276 (1995)CrossRefGoogle Scholar
  39. 39.
    Mojgan, H., Hasuda, H., Sakuragi, M., Yoshida, Y., Suzuki, K., Ito, Y.: Modification of the titan surface with photoreactive gelatin to regulate cell attachment. J. Biomed. Mater. Res. 83, 906–914 (2007)Google Scholar
  40. 40.
    Kitajima, T., Obuse, S., Adachi, T., Tomita, M., Ito, Y.: Modification of the titan surface with photoreactive gelatin to regulate cell attachment. Biotechnol. Bioeng. 108, 2468–2476 (2011)CrossRefPubMedGoogle Scholar
  41. 41.
    Martin, T.A., Herman, C.T., Michael, M.C., Potts, G.K., Bailey, R.C.: Quantitative photochemical immobilization of biomolecules on planar and corrugated substrates: a versatile strategy for creating functional biointerfaces. ACS Appl. Mater. Interfaces 3, 3762–3771 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ito, Y., Nogawa, M., Sugimura, H., Takagi, O.: Photodegradation micropatterning of adsorbed collagen by vacuum ultraviolet light. Langmuir 20, 4299–4301 (2004)CrossRefPubMedGoogle Scholar
  43. 43.
    Kang, I.-K., Kim, G.J., Kwon, O.H., Ito, Y.: Co-culture of hepatocytes and fibroblasts by micro-patterned immobilization of β-galactose derivatives. Biomaterials 25, 4225–4232 (2004)CrossRefPubMedGoogle Scholar
  44. 44.
    Ito, Y.: Covalently immobilized biosignal molecule materials for tissue engineering. Soft Matter 4(1), 46–56 (2008)CrossRefGoogle Scholar
  45. 45.
    Ito, Y.: Growth factors on biomaterial surfaces. In: Puleo D., Bizios, R., (eds) Biological Interactions on Materials Surfaces: Understanding and Controlling Protein, Cell and Tissue Responses, pp. 173–197. Springer, Berlin (2009)CrossRefGoogle Scholar
  46. 46.
    Joddar, B., Ito, Y.: Biological modifications of materials surfaces with proteins for regenerative medicine. J. Mater. Chem. 21, 13737 (2011)CrossRefGoogle Scholar
  47. 47.
    Ito, Y.: Growth factors and protein modified surfaces and interfaces. In: Ducheyne, P., Healy, K.E., Hutmacher, D.W., Grainger, D.W., Kirkpatrick, C.J. (eds.) Comprehensive Biomaterials vol. 4, Surface Engineering, pp. 247–279. Elsevier (2011)CrossRefGoogle Scholar
  48. 48.
    Zhou, D., Ito, Y.: Inorganic material surfaces made bioactive by immobilizing growth factors for hard tissue engineering. RSC Adv. 3, 11095 (2013)CrossRefGoogle Scholar
  49. 49.
    Ito, Y., Chen, G., Imanishi, Y.: Photoimmobilization of insulin onto polystyrene dishes for protein-free cell culture. Biotechnol. Prog. 12, 700–703 (1996)CrossRefPubMedGoogle Scholar
  50. 50.
    Ito, Y., Kondo, S., Chen, G., Imanishi, Y.: Patterned artifi cial juxtacrine stimulation of cells by covalently immobilized insulin. FEBS Lett. 403, 159–162 (1997)CrossRefPubMedGoogle Scholar
  51. 51.
    Chen, G., Ito, Y., Imanishi, Y.: Photo-immobilization of epidermal growth factor enhances its mitogenic effect by artificial juxtacrine signaling. Biochim. Biophys. Acta 1358, 200–208 (1997)CrossRefPubMedGoogle Scholar
  52. 52.
    Ito, Y., Chen, G., Imanishi, Y.: Micropatterned Immobilization of Epidermal Growth Factor To Regulate Cell Function. Bioconj. Chem. 9, 277–282 (1998)CrossRefGoogle Scholar
  53. 53.
    Chen, G., Ito, Y.: Gradient micropattern immobilization of EGF to investigate the effect of artificial juxtacrine stimulation. Biomaterials 22, 2453–2457 (2001)CrossRefPubMedGoogle Scholar
  54. 54.
    Ito, Y.: Regulation of cellular gene expression by artificial materials immobilized with biosignal molecules. Jpn. J. Artif. Organs 27, 541–544 (1998)Google Scholar
  55. 55.
    Joddar, B., Guy, A.T., Kamiguchi, H., Ito, Y.: Spatial gradients of chemotropic factors from immobilized patterns to guide axonal growth and regeneration. Biomaterials 34, 9593–9601 (2013)CrossRefPubMedGoogle Scholar
  56. 56.
    Ito, Y., Hasuda, H., Yamauchi, T., Komatsu, N., Ikebuchi, K.: Immobilization of erythropoietin to culture erythropoietin-dependent human leukemia cell line. Biomaterials 25, 2293–2298 (2004)CrossRefPubMedGoogle Scholar
  57. 57.
    Makino, H., Hasuda, H., Ito, Y.: Immobilization of leukemia inhibitory factor (LIF) to culture murine embryonic stem cells. J. Biosci. Bioeng. 98, 374–379 (2004)CrossRefPubMedGoogle Scholar
  58. 58.
    Ito, Y., Hasuda, H., Terada, H., Kitajima, T.: Culture of human umbilical vein endothelial cells on immobilized vascular endothelial growth factor. J. Biomed. Mater. Res. 74, 659–665 (2005)CrossRefGoogle Scholar
  59. 59.
    Alsop, A.T., Pence, J.C., Weisgerber, D.W., Harley, B.A., Bailey, R.C.: Photopatterning of vascular endothelial growth factor within collagen-glycosaminoglycan scaffolds can induce a spatially confined response in human umbilical vein endothelial cells. Acta Biomater. 10, 4715–4722 (2014)CrossRefPubMedGoogle Scholar
  60. 60.
    Park, Y.S., Ito, Y.: Micropattern-immobilization of heparin to regulate cell growth with fibroblast growth factor. Cytotechnology 33, 117–122 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Ito, Y., Hayashi, M., Imanishi, Y.: Gradient micropattern immobilization of heparin and its interaction with cells. J. Biomater. Sci. Polym. Ed. 12, 367–378 (2001)CrossRefPubMedGoogle Scholar
  62. 62.
    Doi, K., Matsuda, T.: Enhanced vasclarization in a microporous polyurethane graft imprengnated with basic fibroblast growth factor and heparin. J. Biomed. Mater. Res. 34, 361–370 (1997)CrossRefPubMedGoogle Scholar
  63. 63.
    Gomez, N., Schmidt, C.E.: Nerve growth factor-immobilized polypyrrole: Bioactive electrically conducting polymer for enhanced neurite extension. J. Biomed. Mater. Res. A 81, 135–149 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    McCormick, A.M., Asanka, W., Leipzig, N.D.: Specific immobilization of biotinylated fusion proteins NGF and Sema3A utilizing a photo-cross-linkable diazirine compound for controlling neurite extension. Bioconjugate Chem. 24, 1515 (2013)CrossRefPubMedGoogle Scholar
  65. 65.
    McCormick, A.M., Jarmusik, N.A., Leipzig, N.D.: Co-immobilization of semaphorin3A and nerve growth factor to guide and pattern axons. Acta Biomat. 28, 33–34 (2015)CrossRefPubMedGoogle Scholar
  66. 66.
    Boss, V., Roback, J.D., Young, A.N., Roback, L.J., Vogt Weisenhorn, D.M., Medina-Flores, R., Wainer, B.H.: Nerve growth factor, but not epidermal growth factor, increases Fra-2 expression and alters Fra-2/JunD binding to AP-1 and CREB binding elements in pheochromocytoma (PC12) cells. J. Neurosci. 21, 18–26 (2001)CrossRefPubMedGoogle Scholar
  67. 67.
    Ito, Y., Zheng, J., Imanishi, Y., Yonezawa, K., Kasuga, M.: Protein-free cell culture on an artificial substrate with covalently immobilized insulin. Proc. Natl. Acad. Sci. U S A 93, 3598–3601 (1996)CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Kang, J., Tada, S., Sakuragi, M., Abe, H., Ito, R., Ishikawa, J., Kurata, S., Kitajima, T., Son, T.I., Aigaki, T., Ito, Y.: An epidermal growth factor derivative with binding affinity for hydroxyapatite and titanium surfaces. Biomaterials 34, 9747–9753 (2013)CrossRefPubMedGoogle Scholar
  69. 69.
    Zhang, C., Miyatake, H., Wang, Y., Inaba, T., Wang, Y., Zhang, P., Ito, Y.: A bioorthogonal approach for the preparation of a titanium-binding insulin-like growth-factor-1 derivative by using tyrosinase. Angew. Chem. Int. Ed. 55, 11447–11451 (2016)CrossRefGoogle Scholar
  70. 70.
    Ito, Y., Chen, G., Imanishi, Y., Morooka, T., Nishida, E., O, Y., Kasuga, M.: Differential control of cellular gene expression by diffusible and non-diffusible EGF. J. Biochem. 129, 733–737 (2001)CrossRefPubMedGoogle Scholar
  71. 71.
    Lee, H.J., Heo, Y., Park, K.T., Kim, E.H., Ito, Y., Song, K.S., Han, D.-K., Son, Tae-Il: The immobilization of bone morphogenetic protein-2 via photo curable azidophenyl hyaluronic acid on a titanium surface and providing effect for cell differentiation. Macromol. Res. 22, 173–178 (2014)CrossRefGoogle Scholar
  72. 72.
    Konno, T., Kawazoe, N., Chen, G., Ito, Y.: Culture of mouse embryonic stem cells on photoimmobilized polymers. J. Biosci. Bioeng. 102, 304–310 (2006)CrossRefPubMedGoogle Scholar
  73. 73.
    Alberti, K., Davey, R.E., Onishi, K., George, S., Salchert, K., Seib, F.P., Bornhäuser, M., Pompe, T., Nagy, A., Werner, C., Zandstra, P.W.: Functional immobilization of signaling proteins enables control of stem cell fate. Nat. Methods 5, 645–650 (2008)CrossRefPubMedGoogle Scholar
  74. 74.
    Joddar, B., Kitajima, T., Ito, Y.: The effects of covalently immobilized hyaluronic acid substrates on the adhesion, expansion, and differentiation of embryonic stem cells for in vitro tissue engineering. Biomaterials 32, 8404–8415 (2011)CrossRefPubMedGoogle Scholar
  75. 75.
    Mosiewicz, K.A., Kolb, L., van der Vlies, A.J., Martino, M.M., Lienemann, P.S., Hubbell, J.A., Ehrbar, M., Lutolf, M.P.: In situ cell manipulation through enzymatic hydrogel photopatterning. Nat. Mater. 12, 1072–1078 (2013)CrossRefPubMedGoogle Scholar
  76. 76.
    Mao, H., Kim, S.M., Ueki, M., Ito, Y.: Serum-free culturing of human mesenchymal stem cells with immobilized growth factors. J. Mater. Chem. B 5, 928–934 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Tissue Regeneration Materials GroupResearch Center for Functional Materials, National Institute for Materials ScienceTsukubaJapan
  2. 2.Nano Medical Engineering LaboratoryRIKEN & Emergent Bioengineering materials research Team, RIKEN Center for Emergent Matter ScienceWakoJapan

Personalised recommendations