Perturbation Analysis of the Moore-Penrose Inverse and the Weighted Moore-Penrose Inverse

Part of the Developments in Mathematics book series (DEVM, volume 53)


Let A be a given matrix. When computing a generalized inverse of A, due to rounding error, we actually obtain the generalized inverse of a perturbed matrix \(B=A+E\) of A. It is natural to ask if the generalized inverse of B is close to that of A when the perturbation E is sufficiently small.


  1. 1.
    G.W. Stewart, On the continuity of generalized inverse. SIAM J. Appl. Math. 17, 33–45 (1969)MathSciNetCrossRefGoogle Scholar
  2. 2.
    G.W. Stewart, On the perturbation of pseudo-inverse, projections and linear squares problems. SIAM Rev. 19, 634–662 (1977)MathSciNetCrossRefGoogle Scholar
  3. 3.
    P.Å. Wedin, Perturbation theory for pseudo-inverse. BIT 13, 217–232 (1973)MathSciNetCrossRefGoogle Scholar
  4. 4.
    G. Wang, Perturbation theory for weighted Moore-Penrose inverse. Comm. Appl. Math. Comput. 1, 48–60 (1987). in ChineseMathSciNetGoogle Scholar
  5. 5.
    X. He, On the continuity of generalized inverses application of the theory of numerical dependence. Numer. Math. J. Chinese Univ. 1, 168–172 (in Chinese, 1979)Google Scholar
  6. 6.
    D.J. Higham, Condition numbers and their condition numbers. Linear Algebra Appl. 214, 193–213 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    G. Chen, The minimizing property of the weighted condition number in the problem of matrix perturbation. J. East China Norm. Univ. 7, 1–7 (1992). in ChineseGoogle Scholar
  8. 8.
    Y. Wei, D. Wang, Condition numbers and perturbation of the weighted Moore-Penrose inverse and weighted linear least squares problem. Appl. Math. Comput. 145, 45–58 (2003)MathSciNetzbMATHGoogle Scholar
  9. 9.
    R.E. Hartwig, Singular value decomposition and the Moore-Penrose inverse of bordered matices. SIAM J. Appl. Math. 31, 31–41 (1976)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Y. Wei, H. Wu, Expression for the perturbation of the weighted Moore-Penrose inverse. Comput. Math. Appl. 39, 13–18 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    W. Kahan, Numerical linear algebra. Can. Math. Bull. 9, 756–801 (1966)CrossRefGoogle Scholar
  12. 12.
    G. Wang, J. Kuang, On a new measure of degree of ill-condition for matrix. Numer. Math. J. Chinese Univ. 1, 20–30 (in Chinese, 1979)Google Scholar
  13. 13.
    J. Rohn, A new condition number for matrices and linear systems. Computing 41, 167–169 (1989)MathSciNetCrossRefGoogle Scholar
  14. 14.
    G. Chen, Y. Wei, Y. Xue, The generalized condition numbers of bounded linear operators in Banach spaces. J. Aust. Math. Soc. 76, 281–290 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    G. Wang, Some necessary and sufficient condition for minimizing the condition number of a matrix. J. Shanghai Norm. Univ. 15, 10–14 (1986). in ChinesezbMATHGoogle Scholar
  16. 16.
    H. Diao, Y. Wei, On Frobenius normwise condition numbers for Moore-Penrose inverse and linear least-squares problems. Numer. Linear Algebra Appl. 14, 603–610 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Y. Wei, W. Xu, S. Qiao, H. Diao, Componentwise condition numbers for generalized matrix inversion and linear least squares. Numer. Math. J. Chinese Univ. (Engl. Ser.) 14, 277–286 (2005)Google Scholar
  18. 18.
    Y. Wei, Y. Cao, H. Xiang, A note on the componentwise perturbation bounds of matrix inverse and linear systems. Appl. Math. Comput. 169, 1221–1236 (2005)MathSciNetzbMATHGoogle Scholar
  19. 19.
    F. Cucker, H. Diao, Y. Wei, On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems. Math. Comp. 76, 947–963 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    H. Diao, W. Wang, Y. Wei, S. Qiao, On condition numbers for Moore-Penrose inverse and linear least squares problem involving Kronecker products. Numer. Linear Algebra Appl. 20, 44–59 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    L. Meng, B. Zheng, The optimal perturbation bounds of the Moore-Penrose inverse under the Frobenius norm. Linear Algebra Appl. 432, 956–963 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    G.W. Stewart, J. Sun, Matrix Perturbation Theory (Academic Press, New York, 1990)zbMATHGoogle Scholar
  23. 23.
    J. Sun, Matrix Perturbation Analysis, 2nd edn. (Science Press, Beijing, in Chinese, 2001)Google Scholar
  24. 24.
    H. Ma, Acute perturbation bounds of weighted Moore-Penrose inverse. Int. J. Comput. Math. 95, 710–720 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    M.E. Gulliksson, X. Jin, Y. Wei, Perturbation bound for constrained and weighted least squares problem. Linear Algebra Appl. 349, 221–232 (2002)MathSciNetCrossRefGoogle Scholar
  26. 26.
    M.E. Gulliksson, P.Å. Wedin, Y. Wei, Perturbation identities for regularized Tikhonov inverses and weighted pseudoinverse. BIT 40, 513–523 (2000)MathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Wei, Supremum and Stability of Weighted Pseudoinverses and Weighted Least Squares Problems Analysis and Computations (Nova Science Publisher Inc., Huntington, 2001)zbMATHGoogle Scholar
  28. 28.
    Y. Wei, G. Wang, On continuity of the generalized inverse \(A_{T, S}^{(2)}\). Appl. Math. Comput. 136, 289–295 (2003)MathSciNetzbMATHGoogle Scholar
  29. 29.
    X. Liu, W. Wang, Y. Wei, Continuity properties of the \(\{1\}\)-inverse and perturbation bounds for the Drazin inverse. Linear Algebra Appl. 429, 1026–1037 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    W. Xu, Y. Wei, S. Qiao, Condition numbers for structured least squares. BIT 46, 203–225 (2006)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Y. Wei, N. Zhang, Condition number related with generalized inverse \(A_{T, S}^{(2)}\) and constrained linear systems. J. Comput. Appl. Math. 157, 57–72 (2003)MathSciNetCrossRefGoogle Scholar
  32. 32.
    H. Diao, M. Qin, Y. Wei, Condition numbers for the outer inverse and constrained singular linear system. Appl. Math. Comput. 174, 588–612 (2006)MathSciNetzbMATHGoogle Scholar
  33. 33.
    F. Cucker, H. Diao, Y. Wei, Smoothed analysis of some condition numbers. Numer. Linear Algebra Appl. 13, 71–84 (2006)MathSciNetCrossRefGoogle Scholar
  34. 34.
    P. Burgisser, F. Cucker, Smoothed analysis of Moore-Penrose inversion. SIAM J. Matrix Anal. Appl. 31, 2769–2783 (2010)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Z. Xu, C. Gu, B. Feng, Weighted acute perturbation for two matrices. Arab. J. Sci. Eng. ASJE. Math. 35(1D), 129–143 (2010)MathSciNetzbMATHGoogle Scholar
  36. 36.
    X. Zhang, X. Fang, C. song, Q. Xu, Representations and norm estimations for the Moore-Penrose inverse of multiplicative perturbations of matrices. Linear Multilinear Algebra 65(3), 555–571 (2017)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Z. Li, Q. Xu, Y. Wei, A note on stable perturbations of Moore-Penrose inverses. Numer. Linear Alegbra Appl. 20, 18–26 (2013)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Q. Xu, C. Song, Y. Wei, The stable perturbation of the Drazin inverse of the square matrices. SIAM J. Matrix Anal. Appl. 31(3), 1507–1520 (2009)MathSciNetCrossRefGoogle Scholar
  39. 39.
    L. Lin, T.-T. Lu, Y. Wei, On level-2 condition number for the weighted Moore-Penrose inverse. Comput. Math. Appl. 55, 788–800 (2008)MathSciNetCrossRefGoogle Scholar
  40. 40.
    K. Avrachenkov, M. Haviv, Perturbation of null spaces with application to the eigenvalue problem and generalized inverses. Linear Algebra Appl. 369, 1–25 (2003)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Z.-C. Li, H.-T. Huang, Y. Wei, A.H.-D. Cheng, Effective Condition Number for Numerical Partial Differential Equations, 2nd edn. (Science Press and Alpha Science International Ltd., Beijing, 2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2018

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiChina
  2. 2.Department of MathematicsFudan UniversityShanghaiChina
  3. 3.Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations