Computational Aspects

Part of the Developments in Mathematics book series (DEVM, volume 53)


It follows from Chap.  1 that the six important kinds of generalized inverse: the M-P inverse \(A^\dag \), the weighted M-P inverse \(A_{MN}^{\dag }\), the group inverse \(A_g\), the Drazin inverse \(A_d\), the Bott-Duffin inverse \(A_{(L)}^{(-1)}\) and the generalized Bott-Duffin inverse \(A_{(L)}^{(\dag )}\) are all the generalized inverse \(A_{T,S}^{(2)}\), which is the \(\{ 2 \}\)-inverse of A with the prescribed range T and null space S.


  1. 1.
    B. Noble, J. Demmel, Applied Linear Algebra, 3rd edn. (Prentice-Hall, New Jersey, 1988)Google Scholar
  2. 2.
    G.W. Stewart, Introduction to Matrix Computation (Academic Press, New York, 1973)zbMATHGoogle Scholar
  3. 3.
    G.H. Golub, C.F. Van Loan, Matrix Computations, 4th edn. (The Johns Hopkins University Press, Baltimore, MD, 2013)zbMATHGoogle Scholar
  4. 4.
    C.F. Van Loan, Generalizing the singular value decomposition. SIAM J. Numer. Anal. 13, 76–83 (1976)MathSciNetCrossRefGoogle Scholar
  5. 5.
    C.R. Rao, S.K. Mitra, Generalized Inverse of Matrices and Its Applications (John Wiley, New York, 1971)zbMATHGoogle Scholar
  6. 6.
    S.L. Campbell, C.D. Meyer Jr., Generalized Inverses of Linear Transformations (Pitman, London, 1979)zbMATHGoogle Scholar
  7. 7.
    C.D. Meyer, N.J. Rose, The index and the Drazin inverse of block triangular matrices. SIAM J. Appl. Math. 33, 1–7 (1977)MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Miao, The Moore-Penrose inverse of a rank-\(r\) modified matrix. Numer. Math. J. Chinese Univ. 19, 355–361 (1989). (in Chinese)MathSciNetzbMATHGoogle Scholar
  9. 9.
    J.M. Shoaf, The Drazin inverse of a rank-one modification of a square matrix. PhD thesis, North Carolina State University, 1975Google Scholar
  10. 10.
    Y. Wei, The weighted Moore-Penrose inverse of modified matrices. Appl. Math. Comput. 122, 1–13 (2001)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Y. Wei, The Drazin inverse of a modified matrix. Appl. Math. Comput. 125, 295–301 (2002)MathSciNetzbMATHGoogle Scholar
  12. 12.
    T.N.E. Greville, Some applications of pseudoinverse of a martix. SIAM Rev. 2, 15–22 (1960)MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, 2nd edn. (Springer, New York, 2003)zbMATHGoogle Scholar
  14. 14.
    S. Dang, Matrix Theory and its Applications in Survey and Drawing (Survey and Drawing Press, 1980) (in Chinese)Google Scholar
  15. 15.
    X. He, W. Sun, The analysis of the Greville’s method. J. Nanjing Univ. 5, 1–10 (1988). in ChinesezbMATHGoogle Scholar
  16. 16.
    G. Wang, A new proof of Greville method for computing the Moore-Penrose generalized inverse. J. Shanghai Normal Univ. 14, 32–38 (1985). in ChinesezbMATHGoogle Scholar
  17. 17.
    G. Wang, Y. Chen, A recursive algorithm for computing the W-weighted Moore-Penrose inverse \(A_{MN}^{{\dagger }}\). J. Comput. Math. 4, 74–85 (1986)MathSciNetGoogle Scholar
  18. 18.
    R.E. Cline, Representation of the generalized inverse of a partitioned matrix. J. Soc. Indust. Appl. Math. 12, 588–600 (1964)MathSciNetCrossRefGoogle Scholar
  19. 19.
    L. Mihalyffy, An alternative representation of the generalized inverse of partitioned matrices. Linear Algebra Appl. 4, 95–100 (1971)MathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Ben-Israel, A note on partitioned matrices and equations. SIAM Rev. 11, 247–250 (1969)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J.V. Rao, Some more representations for generalized inverse of a partitioned matrix. SIAM J. Appl. Math. 24, 272–276 (1973)MathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Miao, Representations for the weighted Moore-Penrose inverse of a partitioned matrix. J. Comput. Math. 7, 320–323 (1989)MathSciNetGoogle Scholar
  23. 23.
    J. Miao, Some results for computing the Drazin inverse of a partitioned matrix. J. Shanghai Normal Univ. 18, 25–31 (1989). in ChineseGoogle Scholar
  24. 24.
    R.E. Kalaba, N. Rasakhoo, Algorithm for generalized inverse. J. Optim. Theory Appl. 48, 427–435 (1986)MathSciNetCrossRefGoogle Scholar
  25. 25.
    G. Wang, An imbedding method for computing the generalized inverse. J. Comput. Math. 8, 353–362 (1990)MathSciNetzbMATHGoogle Scholar
  26. 26.
    U.J. Le Verrier, Memoire sur les variations séculaires des éléments des orbites, pour les sept Planetes principales Mercure, Venus, La Terre, Mars, Jupiter (Bachelier, Saturne et Uranus, 1845)Google Scholar
  27. 27.
    D.K. Fadeev, V.N. Fadeeva, Computational Methods of Linear Algebra (W.H. Freeman & Co., Ltd, San Francisco, 1963)Google Scholar
  28. 28.
    M. Clique, J.G. Gille, On companion matrices and state variable feedback. Podstawy Sterowania 15, 367–376 (1985)MathSciNetzbMATHGoogle Scholar
  29. 29.
    H.P. Decell Jr., An application of the Cayley-Hamilton theorem to generalized matrix inversion. SIAM Rev. 7(4), 526–528 (1965)MathSciNetCrossRefGoogle Scholar
  30. 30.
    R.E. Kalaba et al., A new proof for Decell’s finite algorithm for the generalized inverse. Appl. Math. Comput. 12, 199–211 (1983)MathSciNetzbMATHGoogle Scholar
  31. 31.
    G. Wang, A finite algorithm for computing the weighted Moore-Penrose inverse \(A_{MN}^{{\dagger }}\). Appl. Math. Comput. 23, 277–289 (1987)MathSciNetGoogle Scholar
  32. 32.
    G. Wang, Y. Wei, Limiting expression for generalized inverse \(A_{T,S}^{(2)}\) and its corresponding projectors. Numer. Math., J. Chinese Univ. (English Series), 4, 25–30 (1995)Google Scholar
  33. 33.
    Y. Chen, Finite algorithm for the \((2)\)-generalized inverse \(A_{T, S}^{(2)}\). Linear Multilinear Algebra 40, 61–68 (1995)MathSciNetCrossRefGoogle Scholar
  34. 34.
    G. Wang, Y. Lin, A new extension of Leverier’s algorithm. Linear Algebra Appl. 180, 227–238 (1993)MathSciNetCrossRefGoogle Scholar
  35. 35.
    G. Wang, L. Qiu, Leverrier-Chebyshev algorithm for singular pencils. Linear Algebra Appl. 345, 1–8 (2002)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Z. Wu, B. Zheng, G. Wang, Leverrier-Chebyshev algorithm for the matrix polynomial of degree two. Numer. Math. J. Chinese Univ. (English Series), 11, 226–234 (2002)Google Scholar
  37. 37.
    Y. Chen, X. Shi, Y. Wei, Convergence of Rump’s method for computing the Moore-Penrose inverse. Czechoslovak Math. J., 66(141)(3), 859–879 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    S. Miljković, M. Milandinović, P.S. Stanimirović, Y. Wei, Gradient methods for computing the Drazin-inverse solution. J. Comput. Appl. Math. 253, 255–263 (2013)MathSciNetCrossRefGoogle Scholar
  39. 39.
    J. Miao, General expressions for the Moore-Penrose inverse of a \(2 \times 2\) block matrix. Linear Algebra Appl. 151, 1–15 (1991)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Y. Wei, Expression for the Drazin inverse of a \(2 \times 2\) block matrix. Linear Multilinear Algebra 45, 131–146 (1998)MathSciNetCrossRefGoogle Scholar
  41. 41.
    S. Dang, A new method for computing the weighted generalized inverse of partitioned matrices. J. Comput. Math. 7, 324–326 (1989)MathSciNetzbMATHGoogle Scholar
  42. 42.
    J. Miao, The Moore-Penrose inverse of a rank-1 modified matrix. J. Shanghai Normal Univ. 17, 21–26 (1988). in ChineseGoogle Scholar
  43. 43.
    J. Miao, The Drazin inverse of Hessenberg matrices. J. Comput. Math. 8, 23–29 (1990)zbMATHGoogle Scholar
  44. 44.
    Y. Wei, Y. Cao, H. Xiang, A note on the componentwise perturbation bounds of matrix inverse and linear systems. Appl. Math. Comput. 169, 1221–1236 (2005)MathSciNetzbMATHGoogle Scholar
  45. 45.
    J. Ji, The algebraic perturbation method for generalized inverses. J. Comput. Math. 7, 327–333 (1989)MathSciNetzbMATHGoogle Scholar
  46. 46.
    P.S. Stanimirović, Limit representations of generalized inverses and related methods. Appl. Math. Comput. 103, 51–68 (1999)MathSciNetzbMATHGoogle Scholar
  47. 47.
    J. Ji, An alternative limit expression of Drazin inverse and its applications. Appl. Math. Comput. 61, 151–156 (1994)MathSciNetzbMATHGoogle Scholar
  48. 48.
    S. Qiao, Recursive least squares algorithm for linear prediction problems. SIAM J. Matrix Anal. Appl. 9, 323–328 (1988)MathSciNetCrossRefGoogle Scholar
  49. 49.
    S. Qiao, Fast adaptive RLS algorithms: a generalized inverse approach and analysis. IEEE Trans. Signal Process. 39, 1455–1459 (1991)CrossRefGoogle Scholar
  50. 50.
    G. Wang, Y. Wei, The iterative methods for computing the generalized inverse \(A_{MN}^{{\dagger }}\) and \(A_{d, W}\). Numer. Math. J. Chinese Univ., 16, 366–371 (1994). (in Chinese)Google Scholar
  51. 51.
    Y. Wei, H. Wu, (\(T\)-\(S\)) splitting methods for computing the generalized inverse \(A_{T, S}^{(2)}\) of rectangular systems. Int. J. Comput. Math. 77, 401–424 (2001)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Y. Wei, A characterization and representation of the generalized inverse \(A_{T, S}^{(2)}\) and its applications. Linear Algebra Appl. 280, 87–96 (1998)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Y. Wei, H. Wu, The representation and approximation for the generalized inverse \(A_{T, S}^{(2)}\). Appl. Math. Comput. 135, 263–276 (2003)MathSciNetzbMATHGoogle Scholar
  54. 54.
    X. Li, Y. Wei, A note on computing the generalized inverse \(A_{T, S}^{(2)}\) of a matrix \(A\). Int. J. Math. Math. Sci. 31, 497–507 (2002)MathSciNetCrossRefGoogle Scholar
  55. 55.
    J.J. Climent, N. Thome, Y. Wei, A geometrical approach on generalized inverse by Neumann-type series. Linear Algebra Appl. 332–334, 535–542 (2001)MathSciNetzbMATHGoogle Scholar
  56. 56.
    X. Chen, W. Wang, Y. Song, Splitting based on the outer inverse of matrices. Appl. Math. Comput. 132, 353–368 (2002)MathSciNetzbMATHGoogle Scholar
  57. 57.
    X. Chen, G. Chen, A splitting method for the weighted Drazin inverse of rectangular matrices. J. East China Normal Univ. 8, 71–78 (1993). in ChineseMathSciNetzbMATHGoogle Scholar
  58. 58.
    X. Chen, R.E. Hartwig, The hyperpower iteration revisited. Linear Algebra Appl. 233, 207–229 (1996)MathSciNetCrossRefGoogle Scholar
  59. 59.
    X. Liu, Y. Yu, J. Zhong, Y. Wei, Integral and limit representations of the outer inverse in Banach space. Linear Multilinear Algebra 60(3), 333–347 (2012)MathSciNetCrossRefGoogle Scholar
  60. 60.
    E.D. Sontag, On generalized inverses of polynomial and other matrtices. IEEE Trans. Auto. Control AC 25, 514–517 (1980)CrossRefGoogle Scholar
  61. 61.
    J. Gao, G. Wang, Two algorithms for computing the Drazin inverse of a polynomial matrix. J. Shanghai Teach. Univ. (Natural Sciences) 31(2), 31–38 (2002). In ChineseGoogle Scholar
  62. 62.
    G. Wang, An application of the block-Cayley-Hamilton theorem. J. Shanghai Normal Univ. 20, 1–10 (1991). in ChineseMathSciNetGoogle Scholar
  63. 63.
    Y. Wei, H. Wu, The representation and approximation for the Drazin inverse. J. Comput. Appl. Math. 126, 417–432 (2000)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Y. Wei, H. Wu, The representation and approximation for the weighted Moore-Penrose inverse. Appl. Math. Comput. 121, 17–28 (2001)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Y. Wei, G. Wang, Approximate methods for the generalized inverse \(A_{T, S}^{(2)}\). J. Fudan Univ. 38, 233–240 (1999)zbMATHGoogle Scholar
  66. 66.
    J. Wang, A recurrent neural networks for real-time matrix inversion. Appl. Math. Comput. 55, 23–34 (1993)CrossRefGoogle Scholar
  67. 67.
    J. Wang, Recurrent neural networks for computing pseudoinverse of rank-deficient matrices. SIAM J. Sci. Comput. 18, 1479–1493 (1997)MathSciNetCrossRefGoogle Scholar
  68. 68.
    P.S. Stanimirović, I.S. Živković, Y. Wei, Neural network approach to computing outer inverses based on the full rank representation. Linear Algebra Appl. 501, 344–362 (2016)MathSciNetCrossRefGoogle Scholar
  69. 69.
    P.S. Stanimirović, I.S. Živković, Y. Wei, Recurrent neural network for computing the Drazin inverse. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2830–2843 (2015)MathSciNetCrossRefGoogle Scholar
  70. 70.
    X. Wang, H. Ma, P.S. Stanimirović, Recurrent neural network for computing the W-weighted Drazin inverse. Appl. Math. Comput. 300, 1–20 (2017)MathSciNetGoogle Scholar
  71. 71.
    S. Qiao, X. Wang, Y. Wei, Two finite-time convergent Zhang neural network models for time-varying complex matrix Drazin inverse. Linear Algebra Appl. 542, 101–117 (2018)MathSciNetCrossRefGoogle Scholar
  72. 72.
    J. Jones, N. Karampetakis, A. Pugh, The computation and application of the generalized inverse via maple. J. Symbolic Comput. 25, 99–124 (1998)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2018

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiChina
  2. 2.Department of MathematicsFudan UniversityShanghaiChina
  3. 3.Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations