Generalization of the Cramer’s Rule and the Minors of the Generalized Inverses

Part of the Developments in Mathematics book series (DEVM, volume 53)


It is well known that the Cramer’s rule for the solution \(\mathbf {x}\) of a nonsingular equation


  1. 1.
    S.M. Robinson, A short proof of Cramer’s rule. Math. Mag. 43, 94–95 (1970). Reprinted in Selected Papers on Algebra (S. Montgomery et al. eds.) Math. Assoc. Amer. 313–314 (1977)MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Ben-Israel, A Cramer rule for least-norm solution of consistent linear equations. Linear Algebra Appl. 43, 223–226 (1982)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Y. Chen, A Cramer rule for solution of the general restricted linear equation. Linear Multilinear Algebra 34, 177–186 (1993)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Y. Chen, Expressions and determinantal formulas for solution of a restricted matrix equation. Acta Math. Appl. Sinica 18(1), 65–73 (1995)MathSciNetzbMATHGoogle Scholar
  5. 5.
    J. Ji, An alternative limit expression of Drazin inverse and its applications. Appl. Math. Comput. 61, 151–156 (1994)MathSciNetzbMATHGoogle Scholar
  6. 6.
    W. Sun, Cramer rule for weighted system. J. Nanjing Univ. 3, 117–121 (1986). in ChineseMathSciNetzbMATHGoogle Scholar
  7. 7.
    G.C. Verghes, A "Cramer rule" for least-norm least-square-error solution of inconsistent linear equations. Linear Algebra Appl. 48, 315–316 (1982)MathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Wang, A Cramer rule for minimum-norm\((T)\) least-squares\((S)\) solution of inconsistent equations. Linear Algebra Appl. 74, 213–218 (1986)MathSciNetCrossRefGoogle Scholar
  9. 9.
    G. Wang, A Cramer rule for finding the solution of a class of singular equations. Linear Algebra Appl. 116, 27–34 (1989)MathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Wang, On extensions of cramer rule. J. Shanghai Normal Univ. 21, 1–7 (1992)MathSciNetGoogle Scholar
  11. 11.
    G. Wang, Z. Wang, More condensed determinant representation for the best approximate solution of the matrix equation \(AXH=K\). J. Shanghai Normal Univ. 19, 27–31 (1990). in ChineseGoogle Scholar
  12. 12.
    H.J. Werner, When is \(B^-A^-\) a generalized inverse of \(AB\)? Linear Algebra Appl. 210, 255–263 (1994)MathSciNetCrossRefGoogle Scholar
  13. 13.
    G. Wang, On the singularity of a certain bordered matrix and its applications to the computation of generalized inverses. J. Shanghai Normal Univ. 18, 7–14 (1989). in ChineseGoogle Scholar
  14. 14.
    H.J. Werner, On extensions of Cramer’s rule for solutions of restricted linear systems. Linear Multilinear Algebra 15, 319–330 (1984)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Y. Chen, B. Zhou, On g-inverses and the nonsingularity of a bordered matrix Open image in new window. Linear Algebra Appl. 133, 133–151 (1990)Google Scholar
  16. 16.
    Y. Wei, A characterization and representation of the generalized inverse \(A_{T, S}^{(2)}\) and its applications. Linear Algebra Appl. 280, 87–96 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Penrose, On best approximate solution of linear matrix equations. Proc. Cambridge Philos. Soc. 52, 17–19 (1956)MathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Ji, The cramer rule for the best approximate solution of the matrix equation \(AXB=D\). J. Shanghai Normal Univ. 14, 19–23 (1985). in ChinesezbMATHGoogle Scholar
  19. 19.
    M. Marcus, M. Minc, A Survey of Matrix Theory and Matrix Inequalities (Mass, Allyn and Bacon, Boston, 1964)zbMATHGoogle Scholar
  20. 20.
    G. Wang, The Generalized Inverses of Matrices and Operators (Science Press, Beijing, 1994). in ChineseGoogle Scholar
  21. 21.
    G. Wang, Weighted Moore-Penrose, Drazin, and group inverses of the Kronecker product \(A \otimes B\) and some applications. Linear Algebra Appl. 250, 39–50 (1997)MathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Ji, Explicit expressions of the generalized inverses and condensed cramer rules. Linear Algebra Appl. 404, 183–192 (2005)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Y. Wei, A characterization for the W-weighted Drazin inverse and Cramer rule for W-weighted Drazin inverse solution. Appl. Math. Comput. 125, 303–310 (2002)MathSciNetzbMATHGoogle Scholar
  24. 24.
    R.A. Brualdi, H. Schneider, Determinantal: gauss, schur, cauchy, sylvester, kronecker, jacobi, binet, laplace, muir and cayley. Linear Algebra Appl. 52, 769–791 (1983)MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Ben-Israel, Minors of the Moore-Penrose inverse. Linear Algebra Appl. 195, 191–207 (1993)MathSciNetCrossRefGoogle Scholar
  26. 26.
    A. Ben-Israel, A volume associated with \(m \times n\) matrices. Linear Algebra Appl. 167, 87–111 (1992)MathSciNetCrossRefGoogle Scholar
  27. 27.
    G. Wang, J. Sun, J. Gao. Minors of the weighted Moore-Penrose inverse. Numer. Math., J. Chinese Univ. 19(4), 343–348 (1997). in ChineseGoogle Scholar
  28. 28.
    R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd edn. (Cambridge University Press, Cambridge, 2012)CrossRefGoogle Scholar
  29. 29.
    J. Miao, Reflexive generalized inverses and their minors. Linear Multilinear Algebra 35, 153–163 (1993)MathSciNetCrossRefGoogle Scholar
  30. 30.
    G. Wang, J. Gao, J. Sun, Minors of Drazin inverses. J. Shanghai Normal Univ. 28, 12–15 (1998). in ChineseGoogle Scholar
  31. 31.
    G. Wang, J. Gao, Minors of the generalized inverse \(A_{T, S}^{(2)}\). Math. Numer. Sinica 23(4), 439–446 (2001). in ChineseGoogle Scholar
  32. 32.
    Y. Yu, The generalized inverse \(A_{T,S}^{(2)}\) on an associative ring: theory and computation. Ph.D. thesis, Shanghai Normal University, China, 2006. in ChineseGoogle Scholar
  33. 33.
    Y. Chen, Finite algorithm for the \((2)\)-generalized inverse \(A_{T, S}^{(2)}\). Linear Multilinear Algebra 40, 61–68 (1995)MathSciNetCrossRefGoogle Scholar
  34. 34.
    R.B. Bapat, A. Ben-Israel, Singular values and maximum rank minors of generalized inverses. Linear Multilinear Algebra 40, 153–161 (1995)MathSciNetCrossRefGoogle Scholar
  35. 35.
    R.E. Hartwig, Singular value decomposition and the Moore-Penrose inverse of bordered matices. SIAM J. Appl. Math. 31, 31–41 (1976)MathSciNetCrossRefGoogle Scholar
  36. 36.
    R.E. Hartwig, Block generalized inverses. Arch Rational Mech. Anal. 61, 197–251 (1976)MathSciNetCrossRefGoogle Scholar
  37. 37.
    J. Miao, Representations for the weighted Moore-Penrose inverse of a partitioned matrix. J. Comput. Math. 7, 320–323 (1989)MathSciNetGoogle Scholar
  38. 38.
    J. Miao, Some results for computing the Drazin inverse of a partitioned matrix. J. Shanghai Normal Univ. 18, 25–31 (1989). in ChineseGoogle Scholar
  39. 39.
    M. Wei, W. Guo, On g-inverses of a bordered matrix: revisited. Linear Algebra Appl. 347, 189–204 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2018

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiChina
  2. 2.Department of MathematicsFudan UniversityShanghaiChina
  3. 3.Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations