Drazin Inverse

Part of the Developments in Mathematics book series (DEVM, volume 53)


In Chap.  1, we discussed the Moore-Penrose inverse and the \(\{i, j, k\}\) inverses which possess some “inverse-like” properties. The \(\{ i, j, k \}\) inverses provide some types of solution, or the least-square solution, for a system of linear equations just as the regular inverse provides a unique solution for a nonsingular system of linear equations. Hence the \(\{ i, j, k \}\) inverses are called equation solving inverses. However, there are some properties of the regular inverse matrix that the \(\{ i, j, k \}\) inverses do not possess.


  1. 1.
    R.E. Cline, T.N.E. Greville, A Drazin inverse for rectangular matrices. Linear Algebra Appl. 29, 54–62 (1980)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Y. Wei, A characterization for the W-weighted Drazin inverse and Cramer rule for W-weighted Drazin inverse solution. Appl. Math. Comput. 125, 303–310 (2002)Google Scholar
  3. 3.
    Y. Wei, Integral representation of the W-weighted Drazin inverse. Appl. Math. Comput. 144, 3–10 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    M.P. Drazin, Pseudo-inverses in associate rings and semigroups. Amer. Math. Monthly 65, 506–514 (1958)MathSciNetCrossRefGoogle Scholar
  5. 5.
    T.N.E. Greville, Spectral generalized inverses of square matrtces. MRC Technical Science Report 823 (Mathematics Research Center, University of Wisconsin, Madison, 1967)Google Scholar
  6. 6.
    C.D. Meyer, The role of the group generalized inverse in the theory of finite Markov chains. SIAM Rev. 17, 443–464 (1975)MathSciNetCrossRefGoogle Scholar
  7. 7.
    C.D. Meyer, The condition number of a finite Markov chains and perturbation bounds for the limiting probabilities. SIAM J. Alg. Disc. Math. 1, 273–283 (1980)CrossRefGoogle Scholar
  8. 8.
    A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, 2nd edn. (Springer Verlag, New York, 2003)Google Scholar
  9. 9.
    S.L. Campbell, C.D. Meyer Jr., Generalized Inverses of Linear Transformations (Pitman, London, 1979)Google Scholar
  10. 10.
    J.H. Wilkinson, Note on the practical significance of the Drazin inverse, in Recent Applications of Generalized Inverses, ed. by S.L. Campbell (Pitman, London, 1982)Google Scholar
  11. 11.
    Y. Wei, A characterization and representation of the Drazin inverse. SIAM J. Matrix Anal. Appl. 17, 744–747 (1996)Google Scholar
  12. 12.
    Q. Xu, Y. Wei, C. Song, Explicit characterization of the Drazin index. Linear Algebra Appl. 436, 2273–2298 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    C. Zhu, G. Chen, Index splitting for the Drazin inverse of linear operator in Banach space. Appl. Math. Comput. 135, 201–209 (2003)Google Scholar
  14. 14.
    P.S. Stanimirović, D. Djordjević, Full-rank and determinantal representation of the Drazin inverse. Linear Algebra Appl. 311, 131–151 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    R.E. Hartwig, The group inverse of a triangular matrix. Linear Algebra Appl. 237–238, 97–108 (1996)MathSciNetzbMATHGoogle Scholar
  16. 16.
    S. Kirkland, M. Neumann, Group Inverses of M-Matrices and Their Applications (CRC Press, Boca Raton, FL, 2013)zbMATHGoogle Scholar
  17. 17.
    R.E. Hartwig, X. Li, Y. Wei, Representations for the Drazin inverse of a \(2 \times 2\) block matrix. SIAM J. Matrix Anal. Appl 27, 767–771 (2006)MathSciNetzbMATHGoogle Scholar
  18. 18.
    C. Deng, Y. Wei, Representations for the Drazin inverse of \(2\times 2\) block matrix with singular Schur complement. Linear Algebra Appl. 435, 2766–2783 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Y. Wei, Expression for the Drazin inverse of a \(2 \times 2\) block matrix. Linear Multilinear Algebra 45, 131–146 (1998)Google Scholar
  20. 20.
    Y. Wei, H. Diao, On group inverse of singular Toeplitz matrices. Linear Algebra Appl. 399, 109–123 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Chen, Z. Xu, Representations for the weighted Drazin inverse of a modified matrix. Appl. Math. Comput. 203(1), 202–209 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    D.S. Cvetković-Ilić, J. Chen, Z. Xu, Explicit representations of the Drazin inverse of block matrix and modified matrix. Linear Multilinear Algebra 57(4), 355–364 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    J.M. Shoaf, The Drazin inverse of a rank-one modification of a square matrix. Ph.D. thesis, North Carolina State University, 1975Google Scholar
  24. 24.
    Y. Wei, The Drazin inverse of a modified matrix. Appl. Math. Comput. 125, 295–301 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2018

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiChina
  2. 2.Department of MathematicsFudan UniversityShanghaiChina
  3. 3.Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations