Mills, J., Shilson, S., Woodley, Q., Woodwark, A.: Keeping Britain moving, United Kingdom’s Transport Infrastructure Needs (2011). http://www.mckinsey.com/~/media/McKinsey/dotcom/client_service/Infrastructure/PDFs/Keeping_Britain_Moving_the_United_Kingdoms_Transport_Infrastructure_Needs.ashx
Ahn, T.-H., Kishi, T.: Crack self-healing behavior of cementitious composites incorporating various mineral admixtures. J. Adv. Concr. Technol. 8, 171–186 (2010). https://doi.org/10.3151/jact.8.171
CrossRef
Google Scholar
Natale, P.J.: Failing Infrastructure—Threatening our Economy and Way of Life, NJIT Magazine (2010)
Google Scholar
Altun, S., Sezer, A., Erol, A.: The effects of additives and curing conditions on the mechanical behavior of a silty soil. Cold Reg. Sci. Technol. 56, 135–140 (2009). https://doi.org/10.1016/j.coldregions.2008.11.007
CrossRef
Google Scholar
Davis, K., Warr, L., Burns, S., Hoppe, E.J.: Physical and chemical behavior of four cement-treated aggregates. J. Mater. Civ. Eng. 19, 891–897 (2007). https://doi.org/10.1061/(ASCE)0899-1561(2007)19:10(891)
CrossRef
Google Scholar
Qi, J., Ma, W., Song, C.: Influence of freeze-thaw on engineering properties of a silty soil. Cold Reg. Sci. Technol. 53, 397–404 (2008). https://doi.org/10.1016/j.coldregions.2007.05.010
CrossRef
Google Scholar
Wang, D.Y., Ma, W., Niu, Y.H., Chang, X.X., Wen, Z.: Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay. Cold Reg. Sci. Technol. 48, 34–43 (2007). https://doi.org/10.1016/j.coldregions.2006.09.008
CrossRef
Google Scholar
Jamshidi, R.J., Lake, C.B., Barnes, C.L.: Examining freeze / thaw cycling and its impact on the hydraulic performance of a cement-treated silty sand. J. Cold Reg. Eng. ASCE. 29, 04014014 (2015). https://doi.org/10.1061/(asce)cr.1943-5495.0000081
CrossRef
Google Scholar
Harbottle, M.J., Lam, M., Botusharova, S.P., Gardner, D.R.: Self-healing soil: biomimetic engineering of geotechnical structures to respond to damage. In: Proceedings of the 7th International Congress on Environmental Geotechnics (2014)
Google Scholar
Kanellopoulos, A., Qureshi, T.S., Al-Tabbaa, A.: Glass encapsulated minerals for self-healing in cement based composites. Constr. Build. Mater. 98, 780–791 (2015). https://doi.org/10.1016/j.conbuildmat.2015.08.127
CrossRef
Google Scholar
Pelletier, M.M., Brown, R., Shukla, A., Bose, A.: Self-healing concrete with a microencapsulated healing agent. University of Rhode Island, Kingston, USA (2010)
Google Scholar
Qureshi, T.S., Kanellopoulos, A., Al-Tabbaa, A.: Encapsulation of expansive powder minerals within a concentric glass capsule system for self-healing concrete. Constr. Build. Mater. 121, 629–643 (2016). https://doi.org/10.1016/j.conbuildmat.2016.06.030
CrossRef
Google Scholar
ASTM: D560/D560 M - 15, Standard Test Methods for Freezing and Thawing Compacted Soil-Cement Mixtures, ASTM International (2015). https://doi.org/10.1520/d0560-03
ASTM: D4219 − 08, Standard Test Method for Unconfined Compressive Strength Index of Chemical- Grouted Soils, ASTM International (2008). https://doi.org/10.1520/d4219-08.2
Liu, J., Wang, T., Tian, Y.: Experimental study of the dynamic properties of cement- and lime-modified clay soils subjected to freeze-thaw cycles. Cold Reg. Sci. Technol. 61, 29–33 (2010). https://doi.org/10.1016/j.coldregions.2010.01.002
CrossRef
Google Scholar
Shibi, T., Kamei, T.: Effect of freeze-thaw cycles on the strength and physical properties of cement-stabilised soil containing recycled bassanite and coal ash. Cold Reg. Sci. Technol. 106–107, 36–45 (2014). https://doi.org/10.1016/j.coldregions.2014.06.005
CrossRef
Google Scholar